Rethinking asexuality: the enigmatic case of functional sexual genes in Lepraria (Stereocaulaceae).

Meredith M Doellman, Yukun Sun, Alejandrina Barcenas-Peña, H Thorsten Lumbsch, Felix Grewe
Author Information
  1. Meredith M Doellman: The Grainger Bioinformatics Center & Negaunee Integrative Research Center, Collections, Conservation and Research Division, The Field Museum, Chicago, IL, 60605, USA.
  2. Yukun Sun: The Grainger Bioinformatics Center & Negaunee Integrative Research Center, Collections, Conservation and Research Division, The Field Museum, Chicago, IL, 60605, USA.
  3. Alejandrina Barcenas-Peña: The Grainger Bioinformatics Center & Negaunee Integrative Research Center, Collections, Conservation and Research Division, The Field Museum, Chicago, IL, 60605, USA.
  4. H Thorsten Lumbsch: The Grainger Bioinformatics Center & Negaunee Integrative Research Center, Collections, Conservation and Research Division, The Field Museum, Chicago, IL, 60605, USA.
  5. Felix Grewe: The Grainger Bioinformatics Center & Negaunee Integrative Research Center, Collections, Conservation and Research Division, The Field Museum, Chicago, IL, 60605, USA. fgrewe@fieldmuseum.org.

Abstract

BACKGROUND: The ubiquity of sex across eukaryotes, given its high costs, strongly suggests it is evolutionarily advantageous. Asexual lineages can avoid, for example, the risks and energetic costs of recombination, but suffer short-term reductions in adaptive potential and long-term damage to genome integrity. Despite these costs, lichenized fungi have frequently evolved asexual reproduction, likely because it allows the retention of symbiotic algae across generations. The lichenized fungal genus Lepraria is thought to be exclusively asexual, while its sister genus Stereocaulon completes a sexual reproductive cycle. A comparison of sister sexual and asexual clades should shed light on the evolution of asexuality in lichens in general, as well as the apparent long-term maintenance of asexuality in Lepraria, specifically.
RESULTS: In this study, we assembled and annotated representative long-read genomes from the putatively asexual Lepraria genus and its sexual sister genus Stereocaulon, and added short-read assemblies from an additional 22 individuals across both genera. Comparative genomic analyses revealed that both genera were heterothallic, with intact mating-type loci of both idiomorphs present across each genus. Additionally, we identified and assessed 29 genes involved in meiosis and mitosis and 45 genes that contribute to formation of fungal sexual reproductive structures (ascomata). All genes were present and appeared functional in nearly all Lepraria, and we failed to identify a general pattern of relaxation of selection on these genes across the Lepraria lineage. Together, these results suggest that Lepraria may be capable of sexual reproduction, including mate recognition, meiosis, and production of ascomata.
CONCLUSIONS: Despite apparent maintenance of machinery essential for fungal sex, over 200 years of careful observations by lichenologists have produced no evidence of canonical sexual reproduction in Lepraria. We suggest that Lepraria may have instead evolved a form of parasexual reproduction, perhaps by repurposing MAT and meiosis-specific genes. This may, in turn, allow these lichenized fungi to avoid long-term consequences of asexuality, while maintaining the benefit of an unbroken bond with their algal symbionts.

Keywords

References

  1. Proc Biol Sci. 2018 Feb 14;285(1872): [PMID: 29436502]
  2. PLoS Biol. 2008 May 6;6(5):e110 [PMID: 18462019]
  3. Science. 2000 Nov 10;290(5494):1151-5 [PMID: 11073452]
  4. Microbiol Mol Biol Rev. 2021 Dec 15;85(4):e0002021 [PMID: 34585983]
  5. Microb Genom. 2017 Sep 14;3(10):e000132 [PMID: 29177090]
  6. BMC Genomics. 2023 Jun 13;24(1):321 [PMID: 37312063]
  7. J Theor Biol. 1971 Feb;30(2):319-35 [PMID: 5548029]
  8. Genes (Basel). 2019 Apr 30;10(5): [PMID: 31052334]
  9. Genome Biol Evol. 2019 Mar 1;11(3):721-730 [PMID: 30715356]
  10. Bioinformatics. 2018 Jul 1;34(13):i142-i150 [PMID: 29949969]
  11. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6414-8 [PMID: 3413105]
  12. mBio. 2013 Jan 22;4(1):e00572-12 [PMID: 23341551]
  13. Chromosome Res. 2007;15(5):667-79 [PMID: 17674153]
  14. Microbiol Spectr. 2017 Jun;5(3): [PMID: 28597816]
  15. Mol Microbiol. 2003 Aug;49(3):717-30 [PMID: 12864854]
  16. Cell. 2001 Dec 28;107(7):905-16 [PMID: 11779466]
  17. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  18. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  19. Curr Opin Microbiol. 2010 Dec;13(6):672-6 [PMID: 20934903]
  20. Nat Microbiol. 2016 Mar 21;1(6):16033 [PMID: 27572831]
  21. Curr Protoc Bioinformatics. 2020 Jun;70(1):e102 [PMID: 32559359]
  22. Proc Natl Acad Sci U S A. 2007 May 8;104(19):8089-94 [PMID: 17470786]
  23. BMC Genomics. 2024 Oct 26;25(1):1003 [PMID: 39455957]
  24. Bioinformatics. 2019 Feb 1;35(3):526-528 [PMID: 30016406]
  25. Mol Biol Evol. 2020 Jan 1;37(1):295-299 [PMID: 31504749]
  26. Front Fungal Biol. 2021 May 26;2:656386 [PMID: 37744149]
  27. Genome Res. 2017 May;27(5):737-746 [PMID: 28100585]
  28. Genetics. 1974 Oct;78(2):737-56 [PMID: 4448362]
  29. Mol Biol Evol. 2021 Sep 27;38(10):4647-4654 [PMID: 34320186]
  30. Bioessays. 2008 Jun;30(6):579-89 [PMID: 18478537]
  31. Cladistics. 2008 Aug;24(4):443-458 [PMID: 34879629]
  32. Science. 1999 Aug 20;285(5431):1271-5 [PMID: 10455055]
  33. PLoS One. 2014 Nov 10;9(11):e112145 [PMID: 25383550]
  34. Nat Commun. 2017 Oct 12;8(1):873 [PMID: 29026136]
  35. Nat Methods. 2021 Apr;18(4):366-368 [PMID: 33828273]
  36. Nat Biotechnol. 2019 May;37(5):540-546 [PMID: 30936562]
  37. Nature. 1981 Jul 16;292(5820):237-9 [PMID: 7254315]
  38. Microbiol Mol Biol Rev. 1997 Dec;61(4):411-28 [PMID: 9409146]
  39. Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9451-9457 [PMID: 32300014]
  40. Gigascience. 2022 Feb 4;11: [PMID: 35134927]
  41. Eukaryot Cell. 2007 May;6(5):868-74 [PMID: 17384199]
  42. BMC Evol Biol. 2009 Jan 15;9:13 [PMID: 19146661]
  43. Mol Biol Evol. 2015 Mar;32(3):820-32 [PMID: 25540451]
  44. Bioinformatics. 2020 Apr 1;36(7):2253-2255 [PMID: 31778144]
  45. Philos Trans R Soc Lond B Biol Sci. 2016 Oct 19;371(1706): [PMID: 27619694]
  46. Appl Microbiol Biotechnol. 2020 May;104(9):3691-3704 [PMID: 32162092]
  47. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22 [PMID: 24277808]
  48. Bioessays. 1990 Feb;12(2):53-9 [PMID: 2140508]
  49. Mol Biol Evol. 2018 Oct 1;35(10):2582-2584 [PMID: 30165589]
  50. ISME J. 2021 Aug;15(8):2180-2182 [PMID: 33941891]
  51. PLoS One. 2016 Oct 5;11(10):e0163962 [PMID: 27706213]
  52. Genome Biol Evol. 2011;3:950-8 [PMID: 21876220]
  53. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  54. PLoS One. 2014 Sep 02;9(9):e106740 [PMID: 25181515]
  55. Nature. 2000 Apr 6;404(6778):564 [PMID: 10766229]
  56. Proc Natl Acad Sci U S A. 2023 Aug 8;120(32):e2305094120 [PMID: 37523560]
  57. PLoS One. 2022 Jul 1;17(7):e0270481 [PMID: 35776745]
  58. Genome Biol Evol. 2024 May 2;16(5): [PMID: 38686438]
  59. Nat Commun. 2020 Dec 18;11(1):6421 [PMID: 33339818]
  60. BMC Genomics. 2019 Jul 23;20(1):605 [PMID: 31337355]
  61. ISME J. 2020 Oct;14(10):2381-2394 [PMID: 32514118]
  62. Mycologia. 2013 Jul-Aug;105(4):994-1018 [PMID: 23709574]
  63. Mycol Res. 2006 Sep;110(Pt 9):1080-92 [PMID: 16934965]
  64. PLoS Genet. 2007 Apr 27;3(4):e68 [PMID: 17465683]
  65. Nucleic Acids Res. 2023 Jan 6;51(D1):D384-D388 [PMID: 36477806]
  66. IMA Fungus. 2020 Sep 24;11:19 [PMID: 33014691]
  67. Genome Biol. 2019 Nov 28;20(1):257 [PMID: 31779668]
  68. Biol Lett. 2019 Mar 29;15(3):20180871 [PMID: 30836881]
  69. Bioessays. 2019 Jun;41(6):e1800246 [PMID: 31087693]

Grants

  1. CTM2015-64728-C2-1-R/Spanish Ministry of Science

MeSH Term

Reproduction, Asexual
Phylogeny
Ascomycota
Genome, Fungal
Lichens
Genes, Mating Type, Fungal
Genomics

Word Cloud

Created with Highcharts 10.0.0Leprariasexualgenesacrossgenusasexualreproductioncostslong-termlichenizedfungifungalsisterasexualitymaysexAsexualavoidDespiteevolvedStereocaulonreproductivegeneralapparentmaintenancegeneraComparativepresentmeiosisascomatafunctionalsuggestBACKGROUND:ubiquityeukaryotesgivenhighstronglysuggestsevolutionarilyadvantageouslineagescanexamplerisksenergeticrecombinationsuffershort-termreductionsadaptivepotentialdamagegenomeintegrityfrequentlylikelyallowsretentionsymbioticalgaegenerationsthoughtexclusivelycompletescyclecomparisoncladesshedlightevolutionlichenswellspecificallyRESULTS:studyassembledannotatedrepresentativelong-readgenomesputativelyaddedshort-readassembliesadditional22individualsgenomicanalysesrevealedheterothallicintactmating-typelociidiomorphsAdditionallyidentifiedassessed29involvedmitosis45contributeformationstructuresappearednearlyfailedidentifypatternrelaxationselectionlineageTogetherresultscapableincludingmaterecognitionproductionCONCLUSIONS:machineryessential200yearscarefulobservationslichenologistsproducedevidencecanonicalinsteadformparasexualperhapsrepurposingMATmeiosis-specificturnallowconsequencesmaintainingbenefitunbrokenbondalgalsymbiontsRethinkingasexuality:enigmaticcaseStereocaulaceaegenomicsLichenizedMatingMeiosis

Similar Articles

Cited By