Biopolymers as Sustainable and Active Packaging Materials: Fundamentals and Mechanisms of Antifungal Activities.

Fernanda González-Arancibia, Maribel Mamani, Cristian Valdés, Caterina Contreras-Matté, Eric Pérez, Javier Aguilera, Victoria Rojas, Howard Ramirez-Malule, Rodrigo Andler
Author Information
  1. Fernanda González-Arancibia: Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca 3460000, Chile. ORCID
  2. Maribel Mamani: Laboratorio de Bioprocesos, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca 3460000, Chile.
  3. Cristian Valdés: Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile. ORCID
  4. Caterina Contreras-Matté: Programa de Doctorado en Psicología, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3460000, Chile. ORCID
  5. Eric Pérez: Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca 3460000, Chile.
  6. Javier Aguilera: Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca 3460000, Chile.
  7. Victoria Rojas: Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca 3460000, Chile.
  8. Howard Ramirez-Malule: Escuela de Ingeniería Química, Universidad del Valle, Cali A.A. 25360, Colombia. ORCID
  9. Rodrigo Andler: Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule, Talca 3460000, Chile. ORCID

Abstract

Developing bio-based and biodegradable materials has become important to meet current market demands, government regulations, and environmental concerns. The packaging industry, particularly for food and beverages, is known to be the world's largest consumer of plastics. Therefore, the demand for sustainable alternatives in this area is needed to meet the industry's requirements. This review presents the most commonly used bio-based and biodegradable packaging materials, bio-polyesters, and polysaccharide-based polymers. At the same time, a major problem in food packaging is presented: fungal growth and, consequently, food spoilage. Different types of antifungal compounds, both natural and synthetic, are explained in terms of structure and mechanism of action. The main uses of these antifungal compounds and their degree of effectiveness are detailed. State-of-the-art studies have shown a clear trend of increasing studies on incorporating antifungals in biodegradable materials since 2000. The bibliometric networks showed studies on active packaging, biodegradable polymers, films, antimicrobial and antifungal activities, essential oils, starch and polysaccharides, nanocomposites, and nanoparticles. The combination of the development of bio-based and biodegradable materials with the ability to control fungal growth promotes both sustainability and the innovative enhancement of the packaging sector.

Keywords

References

  1. Materials (Basel). 2018 Oct 31;11(11): [PMID: 30384442]
  2. Foods. 2016 Aug 29;5(3): [PMID: 28231152]
  3. J Agric Food Chem. 2023 Nov 8;71(44):16469-16487 [PMID: 37877425]
  4. Int J Biol Macromol. 2020 Feb 15;145:1115-1128 [PMID: 31678101]
  5. Crit Rev Food Sci Nutr. 2024;64(8):2304-2339 [PMID: 36123805]
  6. Pestic Biochem Physiol. 2019 Jun;157:45-52 [PMID: 31153476]
  7. Nutrition. 2009 Nov-Dec;25(11-12):1202-5 [PMID: 19695833]
  8. J Appl Microbiol. 2015 Nov;119(5):1253-62 [PMID: 26294100]
  9. Bioorg Chem. 2020 Nov;104:104240 [PMID: 32906036]
  10. Antioxidants (Basel). 2023 Mar 20;12(3): [PMID: 36979002]
  11. EFSA J. 2023 Jan 17;21(1):e07728 [PMID: 36694841]
  12. Microorganisms. 2022 Feb 04;10(2): [PMID: 35208818]
  13. Food Chem. 2013 Aug 15;139(1-4):389-97 [PMID: 23561122]
  14. Pharmaceutics. 2021 Dec 29;14(1): [PMID: 35056971]
  15. Int J Biol Macromol. 2021 Jan 15;167:85-92 [PMID: 33249156]
  16. Int J Biol Macromol. 2023 Jul 1;242(Pt 3):124869 [PMID: 37201880]
  17. Front Microbiol. 2019 Feb 06;10:137 [PMID: 30787916]
  18. Materials (Basel). 2021 Dec 20;14(24): [PMID: 34947476]
  19. Colloids Surf B Biointerfaces. 2017 Nov 1;159:217-231 [PMID: 28797972]
  20. Int J Biol Macromol. 2023 Sep 30;249:126011 [PMID: 37517763]
  21. Curr Top Med Chem. 2018;18(29):2481-2490 [PMID: 30430938]
  22. Polymers (Basel). 2022 Feb 02;14(3): [PMID: 35160586]
  23. Polymers (Basel). 2021 Apr 08;13(8): [PMID: 33917740]
  24. Front Nutr. 2020 Sep 03;7:140 [PMID: 33015118]
  25. Molecules. 2020 Oct 16;25(20): [PMID: 33081360]
  26. Polymers (Basel). 2022 Oct 11;14(20): [PMID: 36297835]
  27. Environ Chem Lett. 2021;19(2):1715-1735 [PMID: 33192209]
  28. Curr Opin Biotechnol. 2011 Apr;22(2):239-44 [PMID: 21144730]
  29. Plants (Basel). 2022 Mar 16;11(6): [PMID: 35336671]
  30. Antibiotics (Basel). 2023 Dec 28;13(1): [PMID: 38247587]
  31. Fitoterapia. 2018 Mar;125:98-105 [PMID: 29288027]
  32. Int J Biol Macromol. 2021 Jul 1;182:1015-1025 [PMID: 33839180]
  33. Materials (Basel). 2021 Feb 28;14(5): [PMID: 33670834]
  34. J Food Sci. 2007 Apr;72(3):R39-55 [PMID: 17995809]
  35. Front Plant Sci. 2019 Jun 28;10:835 [PMID: 31316537]
  36. Int J Biol Macromol. 2024 Mar;260(Pt 2):129521 [PMID: 38246453]
  37. Nanomaterials (Basel). 2022 Dec 16;12(24): [PMID: 36558323]
  38. Antibiotics (Basel). 2021 Jul 06;10(7): [PMID: 34356743]
  39. Int J Food Microbiol. 2010 Oct 15;143(3):109-17 [PMID: 20800918]
  40. Microb Pathog. 2019 Jan;126:393-398 [PMID: 30476577]
  41. Materials (Basel). 2017 Aug 15;10(8): [PMID: 28809808]
  42. Int J Biol Macromol. 2018 Dec;120(Pt A):1181-1189 [PMID: 30172808]
  43. N Biotechnol. 2016 Jan 25;33(1):231-6 [PMID: 26141376]
  44. Carbohydr Polym. 2024 Mar 15;328:121736 [PMID: 38220350]
  45. Int J Biol Macromol. 2024 Jan;256(Pt 2):128074 [PMID: 37989433]
  46. Molecules. 2019 Dec 29;25(1): [PMID: 31905753]
  47. Planta. 2005 Jun;221(3):305-8 [PMID: 15834583]
  48. Molecules. 2020 Sep 01;25(17): [PMID: 32882899]
  49. Antimicrob Agents Chemother. 2010 Oct;54(10):4235-45 [PMID: 20625155]
  50. Polymers (Basel). 2021 Aug 19;13(16): [PMID: 34451327]
  51. Front Bioeng Biotechnol. 2022 Mar 08;10:780409 [PMID: 35372299]
  52. Polymers (Basel). 2022 Oct 28;14(21): [PMID: 36365571]
  53. Int J Biol Macromol. 2020 Jul 15;155:6-13 [PMID: 32194107]
  54. Antibiotics (Basel). 2023 Jan 11;12(1): [PMID: 36671352]
  55. Polymers (Basel). 2021 Oct 08;13(19): [PMID: 34641260]
  56. J Mol Model. 2016 May;22(5):101 [PMID: 27048200]
  57. Carbohydr Polym. 2022 Feb 1;277:118876 [PMID: 34893279]
  58. Antibiotics (Basel). 2021 Jun 18;10(6): [PMID: 34207011]
  59. Biotechnol Adv. 2015 Dec;33(8):1582-1614 [PMID: 26281720]
  60. Microbiol Res. 2008;163(3):337-44 [PMID: 16870411]
  61. Materials (Basel). 2017 Aug 15;10(8): [PMID: 28809799]
  62. Front Bioeng Biotechnol. 2021 Apr 08;9:648704 [PMID: 33898405]
  63. Molecules. 2021 Jun 10;26(12): [PMID: 34200653]
  64. Mol Plant Pathol. 2015 Dec;16(9):1000-5 [PMID: 25727237]
  65. PLoS One. 2016 Nov 3;11(11):e0164507 [PMID: 27812111]
  66. Environ Sci Pollut Res Int. 2021 Jan;28(2):1278-1282 [PMID: 33190206]
  67. Mar Drugs. 2015 Mar 02;13(3):1133-74 [PMID: 25738328]
  68. Semin Cancer Biol. 2021 Nov;76:17-26 [PMID: 34182143]
  69. Int J Biol Macromol. 2018 Jul 1;113:1008-1014 [PMID: 29505877]
  70. Carbohydr Polym. 2020 Feb 15;230:115627 [PMID: 31887941]
  71. J Appl Microbiol. 2021 Jun;130(6):1993-2007 [PMID: 33190384]
  72. Polymers (Basel). 2022 Feb 21;14(4): [PMID: 35215757]
  73. Mol Plant Pathol. 2017 Aug;18(6):811-824 [PMID: 27291634]
  74. Annu Rev Biochem. 2015;84:895-921 [PMID: 26034894]
  75. Pharmaceuticals (Basel). 2017 Nov 02;10(4): [PMID: 29099084]
  76. Chemosphere. 2024 Mar;352:141298 [PMID: 38301834]
  77. J Food Sci. 2008 Apr;73(3):M127-34 [PMID: 18387115]
  78. Plants (Basel). 2023 Mar 16;12(6): [PMID: 36987032]
  79. Mater Sci Eng C Mater Biol Appl. 2019 May;98:1277-1293 [PMID: 30813008]
  80. Front Microbiol. 2017 Jun 06;8:1017 [PMID: 28634477]
  81. J Sci Food Agric. 2023 Feb;103(3):1021-1041 [PMID: 35396735]
  82. Int J Mol Sci. 2023 Jun 22;24(13): [PMID: 37445681]
  83. Pest Manag Sci. 2004 May;60(5):514-20 [PMID: 15154521]
  84. Int J Biol Macromol. 2016 Aug;89:161-74 [PMID: 27126172]
  85. J Appl Microbiol. 2013 Jun;114(6):1642-9 [PMID: 23495848]
  86. J Fungi (Basel). 2022 Dec 22;9(1): [PMID: 36675843]
  87. Polymers (Basel). 2022 Feb 24;14(5): [PMID: 35267731]
  88. Drug Target Insights. 2022 Nov 22;16:25-35 [PMID: 36458152]
  89. J Pharm Bioallied Sci. 2020 Jan-Mar;12(1):1-10 [PMID: 32801594]
  90. Sci Total Environ. 2015 Apr 15;512-513:308-315 [PMID: 25634735]
  91. Foods. 2020 Apr 10;9(4): [PMID: 32290138]
  92. Food Chem X. 2022 Jan 19;13:100217 [PMID: 35498985]
  93. Materials (Basel). 2023 Feb 14;16(4): [PMID: 36837209]
  94. Materials (Basel). 2022 Sep 23;15(19): [PMID: 36233947]
  95. Nat Prod Rep. 2010 Oct;27(10):1469-79 [PMID: 20730220]
  96. Antimicrob Agents Chemother. 2015 Aug;59(8):4584-92 [PMID: 26014932]
  97. Cell Mol Biol (Noisy-le-grand). 2020 Jun 25;66(4):214-223 [PMID: 32583781]
  98. Carbohydr Polym. 2023 Sep 1;315:120987 [PMID: 37230623]
  99. Nat Prod Res. 2021 Dec;35(24):6190-6193 [PMID: 33094646]
  100. Foods. 2022 Oct 05;11(19): [PMID: 36230164]
  101. Plants (Basel). 2017 Sep 22;6(4): [PMID: 28937585]
  102. Waste Manag. 2022 Mar 15;141:63-78 [PMID: 35093857]
  103. Polymers (Basel). 2021 Jan 27;13(3): [PMID: 33513665]
  104. Bioengineering (Basel). 2017 Nov 02;4(4): [PMID: 29099065]
  105. Phytother Res. 2017 Jul;31(7):1039-1045 [PMID: 28524381]
  106. Int J Biol Macromol. 2023 Jan 1;224:578-583 [PMID: 36270401]
  107. Polymers (Basel). 2022 Feb 11;14(4): [PMID: 35215602]
  108. Annu Rev Phytopathol. 2013;51:155-76 [PMID: 23682917]
  109. Carbohydr Polym. 2017 Aug 1;169:101-107 [PMID: 28504125]
  110. Foods. 2021 Oct 15;10(10): [PMID: 34681505]
  111. Foods. 2021 Aug 10;10(8): [PMID: 34441621]
  112. Appl Environ Microbiol. 2002 Apr;68(4):1561-8 [PMID: 11916669]
  113. Science. 2015 Feb 13;347(6223):768-71 [PMID: 25678662]
  114. Food Chem Toxicol. 2021 Jul;153:112259 [PMID: 33984423]
  115. Antimicrob Agents Chemother. 2010 Dec;54(12):5062-9 [PMID: 20921304]
  116. Foods. 2021 Dec 23;11(1): [PMID: 35010155]
  117. Int J Biol Macromol. 2023 Aug 1;245:125245 [PMID: 37330086]
  118. Front Plant Sci. 2023 Oct 04;14:1274770 [PMID: 37860258]
  119. Nanomaterials (Basel). 2022 Jan 28;12(3): [PMID: 35159802]
  120. J Food Prot. 2020 Apr 1;83(4):576-583 [PMID: 31855457]
  121. Int J Biol Macromol. 2021 Apr 15;176:530-539 [PMID: 33607131]
  122. J Environ Health Sci Eng. 2021 Feb 10;19(1):415-425 [PMID: 34150245]
  123. Biomed Res Int. 2021 Nov 1;2021:3598000 [PMID: 34761004]
  124. Food Chem Toxicol. 2013 Dec;62:16-22 [PMID: 23954768]
  125. Int J Food Microbiol. 1996 Nov;33(1):85-102 [PMID: 8913811]
  126. Polymers (Basel). 2021 Apr 20;13(8): [PMID: 33924110]

Grants

  1. FIC-R 40.047.042-0/Gobierno Regional del Maule

MeSH Term

Food Packaging
Antifungal Agents
Biopolymers
Fungi
Polysaccharides

Chemicals

Antifungal Agents
Biopolymers
Polysaccharides

Word Cloud

Created with Highcharts 10.0.0biodegradablepackagingmaterialsantifungalbio-basedfoodstudiesmeetpolymersfungalgrowthcompoundsDevelopingbecomeimportantcurrentmarketdemandsgovernmentregulationsenvironmentalconcernsindustryparticularlybeveragesknownworld'slargestconsumerplasticsThereforedemandsustainablealternativesareaneededindustry'srequirementsreviewpresentscommonlyusedbio-polyesterspolysaccharide-basedtimemajorproblempresented:consequentlyspoilageDifferenttypesnaturalsyntheticexplainedtermsstructuremechanismactionmainusesdegreeeffectivenessdetailedState-of-the-artshowncleartrendincreasingincorporatingantifungalssince2000bibliometricnetworksshowedactivefilmsantimicrobialactivitiesessentialoilsstarchpolysaccharidesnanocompositesnanoparticlescombinationdevelopmentabilitycontrolpromotessustainabilityinnovativeenhancementsectorBiopolymersSustainableActivePackagingMaterials:FundamentalsMechanismsAntifungalActivitiesbiobasedbiopolymers

Similar Articles

Cited By