Study of Different Parameters Affecting Production and Productivity of Polyunsaturated Fatty Acids (PUFAs) and γ-Linolenic Acid (GLA) by Through Glycerol Conversion in Shake Flasks and Bioreactors.

Gabriel Vasilakis, Christina Roidouli, Dimitris Karayannis, Nikos Giannakis, Emmanuel Rondags, Isabelle Chevalot, Seraphim Papanikolaou
Author Information
  1. Gabriel Vasilakis: Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece. ORCID
  2. Christina Roidouli: Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
  3. Dimitris Karayannis: Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece. ORCID
  4. Nikos Giannakis: Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece. ORCID
  5. Emmanuel Rondags: Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France.
  6. Isabelle Chevalot: Laboratory of Reactions and Chemical Engineering, National School of Agronomy and Food Industries (E.N.S.A.I.A.), University of Lorraine, Cours Léopold 34, 54000 Nancy, France.
  7. Seraphim Papanikolaou: Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Technology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.

Abstract

Microbial cultures repurposing organic industrial residues for value-added metabolite production is pivotal for sustainable resource use. Highlighting polyunsaturated fatty acids (PUFAs), particularly gamma-linolenic acid (GLA), renowned for their nutritional and therapeutic value. Notably, Zygomycetes' filamentous fungi harbor abundant GLA-rich lipid content, furthering their relevance in this approach. In this study, the strain NRRL Y-1392 was evaluated for its capability to metabolize glycerol and produce lipids rich in GLA under different culture conditions. Various carbon-to-nitrogen ratios (C/N = 11.0, 110.0, and 220.0 mol/mol) were tested in batch-flask cultivations. The highest GLA production of 224.0 mg/L (productivity equal to 2.0 mg/L/h) was observed under nitrogen excess conditions, while low nitrogen content promoted lipid accumulation (0.59 g of lipids per g of dry biomass) without yielding more PUFAs and GLA. After improving the C/N ratio at 18.3 mol/mol, even higher PUFA (600 mg/L) and GLA (243 mg/L) production values were recorded. GLA content increased when the fungus was cultivated at 12 °C (15.5% / compared to 12.8% / at 28 °C), but productivity values decreased significantly due to prolonged cultivation duration. An attempt to improve productivity by increasing the initial spore population did not yield the expected results. The successful scale-up of fungal cultivations is evidenced by achieving consistent results (compared to flask experiments under corresponding conditions) in both laboratory-scale (Working Volume-Vw = 1.8 L; C/N = 18.3 mol/mol) and semi-pilot-scale (Vw = 15.0 L; C/N = 110.0 mol/mol) bioreactor experiments. To the best of our knowledge, cultivation of the fungus in glycerol-based substrates, especially in 20 L bioreactor experiments, has never been previously reported in the international literature. The successful scale-up of the process in a semi-pilot-scale bioreactor illustrates the potential for industrializing the bioprocess.

Keywords

References

  1. Appl Environ Microbiol. 2000 Aug;66(8):3646-9 [PMID: 10919836]
  2. Environ Sci Pollut Res Int. 2019 Dec;26(35):35523-35532 [PMID: 31267386]
  3. Biomed Res Int. 2020 Nov 5;2020:3621543 [PMID: 33204691]
  4. Antonie Van Leeuwenhoek. 2001 Dec;80(3-4):215-24 [PMID: 11827207]
  5. Biotechnol Bioeng. 2015 Apr;112(4):827-31 [PMID: 25335774]
  6. Appl Microbiol Biotechnol. 2004 Jun;64(6):782-6 [PMID: 14735322]
  7. Biotechnol J. 2013 Jul;8(7):794-800 [PMID: 23625863]
  8. J Appl Microbiol. 2019 Oct;127(4):1080-1100 [PMID: 31286622]
  9. Fungal Genet Biol. 2007 Nov;44(11):1096-108 [PMID: 17822929]
  10. FEMS Microbiol Lett. 2020 May 1;367(10): [PMID: 32275306]
  11. J Biosci Bioeng. 2014 Jun;117(6):725-9 [PMID: 24374122]
  12. Adv Appl Microbiol. 2002;51:1-51 [PMID: 12236054]
  13. World J Microbiol Biotechnol. 2019 Mar 28;35(4):63 [PMID: 30923965]
  14. Appl Biochem Biotechnol. 2012 Jan;166(1):146-58 [PMID: 22057906]
  15. Int J Mol Sci. 2022 Dec 31;24(1): [PMID: 36614154]
  16. Phytochemistry. 2009 Oct-Nov;70(15-16):1867-75 [PMID: 19665150]
  17. J Appl Microbiol. 2017 Dec;123(6):1461-1477 [PMID: 28921786]
  18. J Biotechnol. 2014 Jan 20;170:50-9 [PMID: 24316440]
  19. Syst Microbiol Biomanuf. 2021;1(4):378-396 [PMID: 38624889]
  20. Microorganisms. 2023 May 28;11(6): [PMID: 37374926]
  21. Appl Environ Microbiol. 2001 Sep;67(9):4358-60 [PMID: 11526047]
  22. Appl Microbiol Biotechnol. 2011 Feb;89(4):1255-64 [PMID: 21212944]
  23. FEMS Microbiol Lett. 1996 May 1;138(2-3):221-6 [PMID: 9026450]
  24. J Ind Microbiol Biotechnol. 2015 May;42(5):799-806 [PMID: 25665503]
  25. Microorganisms. 2023 Feb 20;11(2): [PMID: 36838496]
  26. Eur J Pharmacol. 2016 Aug 15;785:77-86 [PMID: 27083549]
  27. Eng Life Sci. 2016 May 06;17(3):262-281 [PMID: 32624773]
  28. J Appl Microbiol. 2015 Apr;118(4):911-27 [PMID: 25626733]
  29. Metabolites. 2022 Dec 27;13(1): [PMID: 36676968]
  30. Food Technol Biotechnol. 2018 Mar;56(1):96-100 [PMID: 29796002]
  31. Biotechnol Bioeng. 2011 May;108(5):1049-55 [PMID: 21449022]
  32. J Gen Appl Microbiol. 1999 Dec;45(6):289-293 [PMID: 12501358]
  33. J Fungi (Basel). 2024 Feb 04;10(2): [PMID: 38392802]
  34. Prep Biochem Biotechnol. 2019;49(8):807-812 [PMID: 31134832]
  35. Yeast. 1997 Jul;13(9):783-93 [PMID: 9234667]
  36. FEMS Microbiol Lett. 2020 Mar 1;367(5): [PMID: 32053204]
  37. Bioresour Technol. 2002 Mar;82(1):43-9 [PMID: 11848376]
  38. Curr Pharm Biotechnol. 2019;20(10):881-894 [PMID: 30747061]
  39. J Biosci Bioeng. 1999;87(1):1-14 [PMID: 16232418]

Grants

  1. HFRI-FM17-1839 - "1st Call for H.F.R.I. Research Projects to Support Faculty Members & Researchers and Procure High-Value Research Equipment"/Hellenic Foundation for Research & Innovation (H.F.R.I.)

Word Cloud

Created with Highcharts 10.0.0GLA0=PUFAsC/Nmol/molproductionacidcontentlipidsconditionsmg/LproductivityexperimentsLbioreactorfattyacidsgamma-linolenicfilamentousfungilipidglycerol110cultivationsnitrogeng183valuesfungus12°C15/comparedcultivationresultssuccessfulscale-upsemi-pilot-scaleMicrobialculturesrepurposingorganicindustrialresiduesvalue-addedmetabolitepivotalsustainableresourceuseHighlightingpolyunsaturatedparticularlyrenownednutritionaltherapeuticvalueNotablyZygomycetes'harborabundantGLA-richfurtheringrelevanceapproachstudystrainNRRLY-1392evaluatedcapabilitymetabolizeproducerichdifferentcultureVariouscarbon-to-nitrogenratios11220testedbatch-flaskhighest224equal2mg/L/hobservedexcesslowpromotedaccumulation59perdrybiomasswithoutyieldingimprovingratioevenhigherPUFA600243recordedincreasedcultivated5%8%28decreasedsignificantlydueprolongeddurationattemptimproveincreasinginitialsporepopulationyieldexpectedfungalevidencedachievingconsistentflaskcorrespondinglaboratory-scaleWorkingVolume-Vw18Vwbestknowledgeglycerol-basedsubstratesespecially20neverpreviouslyreportedinternationalliteratureprocessillustratespotentialindustrializingbioprocessStudyDifferentParametersAffectingProductionProductivityPolyunsaturatedFattyAcidsγ-LinolenicAcidGlycerolConversionShakeFlasksBioreactorsCunninghamellaelegansbioconversiondocosahexaenoicDHApoly-unsaturated

Similar Articles

Cited By