Sensing and Perception in Robotic Weeding: Innovations and Limitations for Digital Agriculture.

Redmond R Shamshiri, Abdullah Kaviani Rad, Maryam Behjati, Siva K Balasundram
Author Information
  1. Redmond R Shamshiri: Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany. ORCID
  2. Abdullah Kaviani Rad: Department of Natural Resources and Environmental Engineering, College of Agriculture, Shiraz University, Shiraz 71946-85111, Iran.
  3. Maryam Behjati: Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469 Potsdam, Germany.
  4. Siva K Balasundram: Department of Agriculture Technology, Faculty of Agriculture, University Putra Malaysia, Serdang 43400, Selangor, Malaysia. ORCID

Abstract

The challenges and drawbacks of manual weeding and herbicide usage, such as inefficiency, high costs, time-consuming tasks, and environmental pollution, have led to a shift in the agricultural industry toward digital agriculture. The utilization of advanced robotic technologies in the process of weeding serves as prominent and symbolic proof of innovations under the umbrella of digital agriculture. Typically, robotic weeding consists of three primary phases: sensing, thinking, and acting. Among these stages, sensing has considerable significance, which has resulted in the development of sophisticated sensing technology. The present study specifically examines a variety of image-based sensing systems, such as RGB, NIR, spectral, and thermal cameras. Furthermore, it discusses non-imaging systems, including lasers, seed mapping, LIDAR, ToF, and ultrasonic systems. Regarding the benefits, we can highlight the reduced expenses and zero water and soil pollution. As for the obstacles, we can point out the significant initial investment, limited precision, unfavorable environmental circumstances, as well as the scarcity of professionals and subject knowledge. This study intends to address the advantages and challenges associated with each of these sensing technologies. Moreover, the technical remarks and solutions explored in this investigation provide a straightforward framework for future studies by both scholars and administrators in the context of robotic weeding.

Keywords

References

  1. Trends Plant Sci. 2014 Jan;19(1):52-61 [PMID: 24139902]
  2. Sensors (Basel). 2021 Nov 23;21(23): [PMID: 34883780]
  3. ACS Omega. 2020 Mar 02;5(10):5421-5428 [PMID: 32201833]
  4. Front Plant Sci. 2022 Nov 09;13:1037760 [PMID: 36438154]
  5. Sci Rep. 2024 May 15;14(1):11173 [PMID: 38750179]
  6. Pest Manag Sci. 2014 Sep;70(9):1329-39 [PMID: 24339388]
  7. Front Plant Sci. 2022 Nov 04;13:1017803 [PMID: 36407588]
  8. Remote Sens (Basel). 2018;10(2):349 [PMID: 32704486]
  9. Sensors (Basel). 2020 May 07;20(9): [PMID: 32392872]
  10. Opt Express. 2006 Dec 11;14(25):12485-93 [PMID: 19529682]
  11. Sensors (Basel). 2021 Mar 26;21(7): [PMID: 33810604]
  12. ScientificWorldJournal. 2012;2012:630390 [PMID: 22629171]
  13. Sensors (Basel). 2022 Aug 18;22(16): [PMID: 36015960]
  14. J Imaging. 2023 Feb 24;9(3): [PMID: 36976108]
  15. Sensors (Basel). 2013 Oct 29;13(11):14662-75 [PMID: 24172283]
  16. Sensors (Basel). 2008 Nov 17;8(11):7300-7322 [PMID: 27873930]
  17. Sci Total Environ. 2023 Nov 15;899:165626 [PMID: 37481085]
  18. Pest Manag Sci. 2023 Jul;79(7):2591-2602 [PMID: 36883563]
  19. Sensors (Basel). 2019 Nov 25;19(23): [PMID: 31775304]
  20. Pest Manag Sci. 2014 Feb;70(2):190-9 [PMID: 24203911]
  21. Sensors (Basel). 2014 Feb 14;14(2):3001-18 [PMID: 24534920]
  22. Sensors (Basel). 2013 Apr 02;13(4):4348-66 [PMID: 23549361]
  23. Data Brief. 2020 Jun 11;31:105833 [PMID: 32577458]
  24. Sensors (Basel). 2012 Dec 13;12(12):17343-57 [PMID: 23443401]
  25. Trends Plant Sci. 2011 Dec;16(12):635-44 [PMID: 22074787]
  26. Plant Dis. 2016 Feb;100(2):241-251 [PMID: 30694129]
  27. Pest Manag Sci. 2019 Jul;75(7):1767-1774 [PMID: 30653830]
  28. Front Plant Sci. 2021 Jun 25;12:611940 [PMID: 34249028]

Word Cloud

Created with Highcharts 10.0.0weedingsensingroboticdigitalagriculturesystemschallengesenvironmentalpollutiontechnologiesstudycandrawbacksmanualherbicideusageinefficiencyhighcoststime-consumingtasksledshiftagriculturalindustrytowardutilizationadvancedprocessservesprominentsymbolicproofinnovationsumbrellaTypicallyconsiststhreeprimaryphases:thinkingactingAmongstagesconsiderablesignificanceresulteddevelopmentsophisticatedtechnologypresentspecificallyexaminesvarietyimage-basedRGBNIRspectralthermalcamerasFurthermorediscussesnon-imagingincludinglasersseedmappingLIDARToFultrasonicRegardingbenefitshighlightreducedexpenseszerowatersoilobstaclespointsignificantinitialinvestmentlimitedprecisionunfavorablecircumstanceswellscarcityprofessionalssubjectknowledgeintendsaddressadvantagesassociatedMoreovertechnicalremarkssolutionsexploredinvestigationprovidestraightforwardframeworkfuturestudiesscholarsadministratorscontextSensingPerceptionRoboticWeeding:InnovationsLimitationsDigitalAgriculturerobotsweed

Similar Articles

Cited By