The Prevalence of Killer Yeasts in the Gardens of Fungus-Growing Ants and the Discovery of Novel Killer Toxin named Ksino.

Rodolfo Bizarria, Jack W Creagh, Tanner J Badigian, Renato A Corrêa Dos Santos, Sarah A Coss, Rim T Tekle, Noah Fredstrom, F Marty Ytreberg, Maitreya J Dunham, Andre Rodrigues, Paul A Rowley
Author Information
  1. Rodolfo Bizarria: Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.
  2. Jack W Creagh: Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.
  3. Tanner J Badigian: Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.
  4. Renato A Corrêa Dos Santos: Laboratory of Computational, Evolutionary, and Systems Biology, Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Piracicaba, São Paulo, Brazil. ORCID
  5. Sarah A Coss: Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.
  6. Rim T Tekle: Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.
  7. Noah Fredstrom: Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
  8. F Marty Ytreberg: Department of Physics, University of Idaho, Moscow, ID, 83844, USA.
  9. Maitreya J Dunham: Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. ORCID
  10. Andre Rodrigues: Department of General and Applied Biology, São Paulo State University (UNESP), Institute of Biosciences, Rio Claro, São Paulo, Brazil.
  11. Paul A Rowley: Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA. ORCID

Abstract

Killer toxins are proteinaceous antifungal molecules produced by yeasts, with activity against a wide range of human and plant pathogenic fungi. Fungus gardens of attine ants in Brazil were surveyed to determine the presence of killer toxin-producing yeasts and to define their antifungal activities and ecological importance. Our results indicate that up to 46% of yeasts isolated from specific fungal gardens can be killer yeasts, with an overall prevalence of 17% across all strains tested. Killer yeasts were less likely to inhibit the growth of yeasts isolated from the same environment but more effective at inhibiting yeast isolated from other environments, supporting a role for killer yeasts in shaping community composition. All killer yeasts harbored genome-encoded killer toxins due to the lack of cytoplasmic toxin-encoding elements (i.e., double-stranded RNA satellites and linear double-stranded DNAs). Of all the killer yeasts identified, an isolate of showed a broad spectrum of antifungal activities against 57% of yeast strains tested for toxin susceptibility. The complete genome sequence of identified a new killer toxin, Ksino, with primary and tertiary structure homology to the killer toxin named Klus. Genome-encoded homologs of Ksino were found in yeast strains of and , as well as other species of Ascomycota and Basidiomycota filamentous fungi. This demonstrates that killer yeasts can be widespread in attine ant fungus gardens, possibly influencing fungal community composition and the importance of these complex microbial communities for discovering novel antifungal molecules.

Keywords

References

  1. Folia Microbiol (Praha). 2002;47(3):259-62 [PMID: 12099266]
  2. Can J Microbiol. 1987 Sep;33(9):783-96 [PMID: 3690423]
  3. J Clin Microbiol. 1993 Sep;31(9):2274-80 [PMID: 8408543]
  4. Viruses. 2019 Jan 16;11(1): [PMID: 30654470]
  5. PLoS Genet. 2021 Feb 4;17(2):e1009341 [PMID: 33539346]
  6. Eukaryot Cell. 2009 Oct;8(10):1521-31 [PMID: 19666779]
  7. Int J Food Microbiol. 2003 Jul 25;84(2):157-74 [PMID: 12781939]
  8. J Comput Chem. 2005 Dec;26(16):1701-18 [PMID: 16211538]
  9. Nucleic Acids Res. 2019 Jan 8;47(D1):D807-D811 [PMID: 30395283]
  10. Yeast. 2012 Mar;29(3-4):145-54 [PMID: 22434608]
  11. Proc Biol Sci. 2008 Mar 7;275(1634):535-41 [PMID: 18182371]
  12. IMA Fungus. 2012 Jun;3(1):59-79 [PMID: 23155501]
  13. Antonie Van Leeuwenhoek. 1995 Aug;68(2):111-8 [PMID: 8546450]
  14. Antonie Van Leeuwenhoek. 2009 Oct;96(3):331-42 [PMID: 19449210]
  15. FEMS Yeast Res. 2003 Jun;3(4):417-32 [PMID: 12748053]
  16. Proc Biol Sci. 2023 Aug 30;290(2005):20231108 [PMID: 37583325]
  17. Agric Biol Chem. 1990 Apr;54(4):979-84 [PMID: 1368554]
  18. Nature. 1973 Sep 14;245(5420):81-6 [PMID: 4582762]
  19. Bioinformatics. 2019 Oct 15;35(20):4168-4169 [PMID: 30874800]
  20. J Basic Microbiol. 2008 Feb;48(1):25-30 [PMID: 18247391]
  21. Evol Appl. 2015 Aug;8(7):738-50 [PMID: 26240609]
  22. Viruses. 2022 Mar 13;14(3): [PMID: 35337001]
  23. Science. 2011 Sep 16;333(6049):1592 [PMID: 21921191]
  24. Antonie Van Leeuwenhoek. 2008 Nov;94(4):517-26 [PMID: 18665453]
  25. Evolution. 2008 Sep;62(9):2372-80 [PMID: 18564376]
  26. mSphere. 2022 Jun 29;7(3):e0002922 [PMID: 35766504]
  27. FEMS Yeast Res. 2013 Dec;13(8):856-9 [PMID: 24028530]
  28. Can J Microbiol. 1988 Jan;34(1):38-44 [PMID: 3288316]
  29. Res Microbiol. 2007 Oct-Nov;158(8-9):638-43 [PMID: 17890060]
  30. Curr Genet. 2011 Feb;57(1):51-62 [PMID: 21116630]
  31. Med Mycol. 2007 Sep;45(6):503-12 [PMID: 17710619]
  32. Toxins (Basel). 2017 Mar 23;9(4): [PMID: 28333108]
  33. Evolution. 2016 Jun;70(6):1342-53 [PMID: 27168531]
  34. Clin Microbiol Rev. 1997 Jul;10(3):369-400 [PMID: 9227858]
  35. Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12902-6 [PMID: 17646660]
  36. Mycologia. 2007 Nov-Dec;99(6):842-58 [PMID: 18333508]
  37. Antonie Van Leeuwenhoek. 2004 Nov;86(4):369-75 [PMID: 15702390]
  38. Yeast. 2019 Aug;36(8):473-485 [PMID: 31050852]
  39. G3 (Bethesda). 2023 Sep 30;13(10): [PMID: 37497616]
  40. Bioinformatics. 2014 May 1;30(9):1236-40 [PMID: 24451626]
  41. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2009 Jan;26(1):73-81 [PMID: 19680874]
  42. Science. 1970 Jul 10;169(3941):184-6 [PMID: 5427351]
  43. Oecologia. 2010 Jan;162(1):103-15 [PMID: 19690891]
  44. Appl Environ Microbiol. 2011 Mar;77(5):1822-32 [PMID: 21239561]
  45. Proc Biol Sci. 2017 Apr 12;284(1852): [PMID: 28404776]
  46. Nat Commun. 2016 Jul 20;7:12233 [PMID: 27436133]
  47. Mycol Res. 2005 Mar;109(Pt 3):261-5 [PMID: 15912941]
  48. J Mol Biol. 1963 Jul;7:95-9 [PMID: 13990617]
  49. PLoS One. 2016 Oct 28;11(10):e0165590 [PMID: 27792761]
  50. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  51. Front Fungal Biol. 2022 Oct 10;3:965781 [PMID: 37746227]
  52. J Virol. 2010 Nov;84(22):11876-87 [PMID: 20810725]
  53. J Basic Microbiol. 2014 Jun;54(6):578-84 [PMID: 23686831]
  54. Antonie Van Leeuwenhoek. 1975;41(2):147-51 [PMID: 239627]
  55. Viruses. 2021 Dec 29;14(1): [PMID: 35062256]
  56. Nucleic Acids Res. 2005 Nov 28;33(20):6494-506 [PMID: 16314312]
  57. Fungal Genet Biol. 2019 Feb;123:1-13 [PMID: 30465882]
  58. Yeast. 1995 Apr 15;11(4):355-60 [PMID: 7785336]
  59. Antimicrob Agents Chemother. 1980 Mar;17(3):350-4 [PMID: 7191690]
  60. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W349-57 [PMID: 23748958]
  61. J Fungi (Basel). 2023 Mar 15;9(3): [PMID: 36983529]
  62. PeerJ. 2013 Mar 05;1:e50 [PMID: 23638388]
  63. Int Microbiol. 2002 Jun;5(2):65-71 [PMID: 12180782]
  64. Stud Mycol. 2023 Jun;105:1-22 [PMID: 38895705]
  65. Mycologia. 2005 Jan-Feb;97(1):167-77 [PMID: 16389968]
  66. Cell. 1984 Jul;37(3):1075-89 [PMID: 6430565]
  67. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  68. Appl Microbiol Biotechnol. 2017 Apr;101(7):2931-2942 [PMID: 28032192]
  69. Mikrobiologiia. 2016 Jan-Feb;85(1):100-6 [PMID: 27301134]
  70. Ecol Evol. 2021 May 01;11(11):5809-5814 [PMID: 34141185]
  71. Elife. 2021 Dec 06;10: [PMID: 34866571]
  72. BMC Biol. 2009 Dec 18;7:88 [PMID: 20021636]
  73. J Clin Microbiol. 2001 Sep;39(9):3362-4 [PMID: 11526179]
  74. Antonie Van Leeuwenhoek. 2003;83(1):89-97 [PMID: 12755485]
  75. J Virol. 1994 Mar;68(3):1765-72 [PMID: 8107238]
  76. Genetics. 1976 Apr;82(4):629-37 [PMID: 1269912]
  77. Methods Mol Biol. 2019;1962:227-245 [PMID: 31020564]
  78. Microb Ecol. 2008 Nov;56(4):604-14 [PMID: 18369523]
  79. Am Nat. 2015 May;185(5):693-703 [PMID: 25905511]
  80. Science. 2009 Oct 23;326(5952):544-550 [PMID: 19745116]
  81. FEMS Yeast Res. 2023 Jan 4;23: [PMID: 37935474]
  82. Cell. 1992 Mar 20;68(6):1077-90 [PMID: 1547504]
  83. NAR Genom Bioinform. 2021 Jan 06;3(1):lqaa108 [PMID: 33575650]
  84. Proc Biol Sci. 2007 Feb 7;274(1608):315-21 [PMID: 17164194]
  85. Toxins (Basel). 2018 Feb 03;10(2): [PMID: 29401638]
  86. mBio. 2020 Sep 8;11(5): [PMID: 32900807]
  87. J Theor Biol. 2005 Sep 7;236(1):12-20 [PMID: 15967180]
  88. FEMS Microbiol Lett. 1995 Apr 1;127(3):213-22 [PMID: 7758935]
  89. J Insect Physiol. 2003 Apr;49(4):307-13 [PMID: 12769984]
  90. Yeast. 2022 Jan;39(1-2):25-39 [PMID: 34473375]
  91. Toxins (Basel). 2017 Oct 11;9(10): [PMID: 29019944]
  92. Bioinformatics. 2020 Mar 1;36(6):1765-1771 [PMID: 31697312]
  93. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  94. New Phytol. 2020 Jul;227(2):601-612 [PMID: 32171021]
  95. Antonie Van Leeuwenhoek. 2015 Oct;108(4):919-31 [PMID: 26219566]
  96. Microbiol Res. 2006;161(4):299-303 [PMID: 16380244]
  97. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  98. Acta Biochim Pol. 2015;62(4):821-4 [PMID: 26636138]
  99. FEMS Microbiol Ecol. 2002 May 1;40(2):151-7 [PMID: 19709222]
  100. Dokl Biol Sci. 2006 Jan-Feb;406:100-2 [PMID: 16572827]
  101. Bioinformatics. 2013 Apr 15;29(8):1072-5 [PMID: 23422339]
  102. Eukaryot Cell. 2006 Jun;5(6):896-904 [PMID: 16757737]
  103. Can J Microbiol. 1997 Apr;43(4):328-36 [PMID: 9115090]
  104. Agric Biol Chem. 1991 Aug;55(8):1953-8 [PMID: 1368726]
  105. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W465-7 [PMID: 15980513]
  106. Brief Bioinform. 2019 Jul 19;20(4):1160-1166 [PMID: 28968734]
  107. Environ Microbiol. 2023 Oct;25(10):1875-1893 [PMID: 37188366]
  108. Microbiology (Reading). 1995 Aug;141 ( Pt 8):2003-2012 [PMID: 7551063]
  109. J Basic Microbiol. 2006;46(2):87-93 [PMID: 16598831]
  110. Nat Commun. 2018 May 14;9(1):1887 [PMID: 29760453]
  111. J Econ Entomol. 2019 Mar 21;112(2):515-524 [PMID: 30561673]
  112. Stud Mycol. 2020 Jun 27;95:5-169 [PMID: 32855739]
  113. Genet Res. 1969 Feb;13(1):71-83 [PMID: 5771662]
  114. Microb Ecol. 2023 Jul;86(1):624-635 [PMID: 35962280]
  115. Front Microbiol. 2015 Sep 15;6:983 [PMID: 26441913]
  116. J Gen Microbiol. 1968 Apr;51(1):115-26 [PMID: 5653223]
  117. J Biol Chem. 1994 Jan 28;269(4):3041-6 [PMID: 8300637]
  118. Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5435-40 [PMID: 18362345]
  119. Yeast. 2017 Jul;34(7):279-292 [PMID: 28387035]
  120. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  121. Evolution. 2008 Mar;62(3):521-7 [PMID: 17983463]
  122. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  123. Mikrobiologiia. 2009 Mar-Apr;78(2):242-7 [PMID: 19449738]
  124. Nature. 2002 Jul 11;418(6894):171-4 [PMID: 12110887]
  125. Syst Appl Microbiol. 2002 Aug;25(2):294-300 [PMID: 12353886]
  126. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  127. Antonie Van Leeuwenhoek. 1977;43(2):125-8 [PMID: 596861]
  128. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  129. Curr Genet. 1994 Oct;26(4):364-8 [PMID: 7882432]
  130. Curr Genet. 1990 Jul;18(1):77-80 [PMID: 2245477]
  131. Antonie Van Leeuwenhoek. 1998 May;73(4):331-71 [PMID: 9850420]
  132. Antonie Van Leeuwenhoek. 2014 Sep;106(3):475-87 [PMID: 25012689]

Grants

  1. P20 GM103408/NIGMS NIH HHS
  2. P20 GM104420/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0yeastskillerKillerantifungalyeasttoxinsgardensisolatedstrainstoxinKsinomoleculesfungiattineantsactivitiesimportancefungalcantestedcommunitycompositiondouble-strandedidentifiednamedproteinaceousproducedactivitywiderangehumanplantpathogenicFungusBrazilsurveyeddeterminepresencetoxin-producingdefineecologicalresultsindicate46%specificoverallprevalence17%acrosslesslikelyinhibitgrowthenvironmenteffectiveinhibitingenvironmentssupportingroleshapingharboredgenome-encodedduelackcytoplasmictoxin-encodingelementsieRNAsatelliteslinearDNAsisolateshowedbroadspectrum57%susceptibilitycompletegenomesequencenewprimarytertiarystructurehomologyKlusGenome-encodedhomologsfoundwellspeciesAscomycotaBasidiomycotafilamentousdemonstrateswidespreadantfunguspossiblyinfluencingcomplexmicrobialcommunitiesdiscoveringnovelPrevalenceYeastsGardensFungus-GrowingAntsDiscoveryNovelToxinAntifungalsBuddingFungus-growing

Similar Articles

Cited By