Unlocking the secrets of Cardiac development and function: the critical role of FHL2.

Tingting Jiang, Qun Zeng, Jing Wang
Author Information
  1. Tingting Jiang: Department of Clinical Laboratory, Hengyang Medical School, the Affiliated Nanhua Hospital, University of South China, Hengyang, 421000, China.
  2. Qun Zeng: Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421000, China.
  3. Jing Wang: Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, Changsha, 410219, China. 805598382@qq.com.

Abstract

FHL2 (Four-and-a-half LIM domain protein 2) is a crucial factor involved in cardiac morphogenesis, the process by which the heart develops its complex structure. It is expressed in various tissues during embryonic development, including the developing heart, and has been shown to play important roles in cell proliferation, differentiation, and migration. FHL2 interacts with multiple proteins to regulate cardiac development as a coactivator or a corepressor. It is involved in cardiac specification and determination of cell fate, cardiomyocyte growth, cardiac remodeling, myofibrillogenesis, and the regulation of HERG channels. Targeting FHL2 has therapeutic implications as it could improve cardiac function, control arrhythmias, alleviate heart failure, and maintain cardiac integrity in various pathological conditions. The identification of FHL2 as a signature gene in atrial fibrillation suggests its potential as a diagnostic marker and therapeutic target for this common arrhythmia.

Keywords

References

  1. Bach I (2000) The LIM domain: regulation by association. Mech Dev 91(1���2):5���17. https://doi.org/10.1016/s0925-4773(99)00314-7 [DOI: 10.1016/s0925-4773(99)00314-7]
  2. Zhang J, Zeng Q, She M (2023) The roles of FHL2 in cancer. Clin Exp Med 23(7):3113���3124. https://doi.org/10.1007/s10238-023-01076-3 [DOI: 10.1007/s10238-023-01076-3]
  3. Kong Y, Shelton JM, Rothermel B, Li X, Richardson JA, Bassel-Duby R, Williams RS (2001) Cardiac-specific LIM protein FHL2 modifies the hypertrophic response to beta-adrenergic stimulation. Circulation 103(22):2731���2738. https://doi.org/10.1161/01.cir.103.22.2731 [DOI: 10.1161/01.cir.103.22.2731]
  4. Kadrmas JL, Beckerle MC (2004) The LIM domain: from the cytoskeleton to the nucleus. Nat Rev Mol Cell Biol 5(11):920���931. https://doi.org/10.1038/nrm1499 [DOI: 10.1038/nrm1499]
  5. She M, Tang M, Jiang T, Zeng Q (2021) The Roles of the LIM Domain Proteins in Drosophila Cardiac and Hematopoietic Morphogenesis. Front Cardiovasc Med 11(8):616851. https://doi.org/10.3389/fcvm.2021.616851 [DOI: 10.3389/fcvm.2021.616851]
  6. Zhang J, She M, Dai Y, Nie X, Tang M, Zeng Q (2023) Lmpt regulates the function of Drosophila muscle by acting as a repressor of Wnt signaling. Gene 5(876):147514. https://doi.org/10.1016/j.gene.2023.147514 [DOI: 10.1016/j.gene.2023.147514]
  7. Schmeichel KL, Beckerle MC (1994) The LIM domain is a modular protein-binding interface. Cell 79(2):211���219. https://doi.org/10.1016/0092-8674(94)90191-0 [DOI: 10.1016/0092-8674(94)90191-0]
  8. Habibe JJ, Clemente-Olivo MP, de Vries CJ (2021) How (Epi) genetic regulation of the LIM-Domain protein FHL2 impacts multifactorial disease. Cells 10(10):2611. https://doi.org/10.3390/cells10102611 [DOI: 10.3390/cells10102611]
  9. Wixler V (2019) The role of FHL2 in wound healing and inflammation. FASEB J 33(7):7799���7809. https://doi.org/10.1096/fj.201802765RR [DOI: 10.1096/fj.201802765RR]
  10. Kurakula K, Vos M, Logiantara A, Roelofs JJ, Nieuwenhuis MA, Koppelman GH, Postma DS, Brandsma CA, Sin DD, Boss�� Y et al (2015) Deficiency of FHL2 attenuates airway inflammation in mice and genetic variation associates with human bronchial hyper-responsiveness. Allergy 70(12):1531���1544. https://doi.org/10.1111/all.12709 [DOI: 10.1111/all.12709]
  11. Kurakula K, Vos M, van Eijk M, Smits HH, de Vries CJ (2015) LIM-only protein FHL2 regulates experimental pulmonary Schistosoma mansoni egg granuloma formation. Eur J Immunol 45(11):3098���3106. https://doi.org/10.1002/eji.201545627 [DOI: 10.1002/eji.201545627]
  12. Kurakula K, Vos M, Otermin Rubio I, Marinkovi�� G, Buettner R, Heukamp LC, Stap J, de Waard V, van Tiel CM, de Vries CJ (2014) The LIM-only protein FHL2 reduces vascular lesion formation involving inhibition of proliferation and migration of smooth muscle cells. PLoS ONE 9(4):e94931. https://doi.org/10.1371/journal.pone.0094931 [DOI: 10.1371/journal.pone.0094931]
  13. van de Pol V, Vos M, DeRuiter MC, Goumans MJ, de Vries CJM, Kurakula K. 2020. LIM-only protein FHL2 attenuates inflammation in vascular smooth muscle cells through inhibition of the NF��B pathway. Vascul Pharmacol. 125���126:106634. https://doi.org/10.1016/j.vph.2019.106634 .
  14. Ebrahimian T, Arfa O, Simeone S, Lemari�� CA, Lehoux S, Wassmann S (2014) Inhibition of four-and-a-half LIM domain protein-2 increases survival, migratory capacity, and paracrine function of human early outgrowth cells through activation of the sphingosine kinase-1 pathway: implications for endothelial regeneration. Circ Res 114(1):114���123. https://doi.org/10.1161/CIRCRESAHA.113.301954 [DOI: 10.1161/CIRCRESAHA.113.301954]
  15. Dahan J, Levillayer F, Xia T, Nou��t Y, Werts C, Fanton d���Andon M, Adib-Conquy M, Cassard-Doulcier AM, Khanna V, Chen J et al (2017) LIM-only protein FHL2 Is a negative regulator of transforming growth factor ��1 expression. Mol Cell Biol 37(10):e00636-e716. https://doi.org/10.1128/MCB.00636-16 [DOI: 10.1128/MCB.00636-16]
  16. Philippar U, Schratt G, Dieterich C, M��ller JM, Galg��czy P, Engel FB, Keating MT, Gertler F, Sch��le R, Vingron M et al (2004) The SRF target gene Fhl2 antagonizes RhoA/MAL-dependent activation of SRF. Mol Cell 16(6):867���880. https://doi.org/10.1016/j.molcel.2004.11.039 [DOI: 10.1016/j.molcel.2004.11.039]
  17. Hsieh FC, Lu YF, Liau I, Chen CC, Cheng CM, Hsiao CD, Hwang SL (2018) Zebrafish VCAP1X2 regulates cardiac contractility and proliferation of cardiomyocytes and epicardial cells. Sci Rep 8(1):7856. https://doi.org/10.1038/s41598-018-26110-3 [DOI: 10.1038/s41598-018-26110-3]
  18. Neuman NA, Ma S, Schnitzler GR, Zhu Y, Lagna G, Hata A (2009) The four-and-a-half LIM domain protein 2 regulates vascular smooth muscle phenotype and vascular tone. J Biol Chem 284(19):13202���13212. https://doi.org/10.1074/jbc.M900282200 [DOI: 10.1074/jbc.M900282200]
  19. Steinhauser ML, Lee RT (2011) Regeneration of the heart. EMBO Mol Med 3(12):701���712. https://doi.org/10.1002/emmm.201100175 [DOI: 10.1002/emmm.201100175]
  20. Knutson AK, Williams AL, Boisvert WA, Shohet RV (2021) HIF in the heart: development, metabolism, ischemia, and atherosclerosis. J Clin Invest 131(17):e137557. https://doi.org/10.1172/JCI137557 [DOI: 10.1172/JCI137557]
  21. Uygur A, Lee RT (2016) Mechanisms of Cardiac Regeneration. Dev Cell 36(4):362���374. https://doi.org/10.1016/j.devcel.2016.01.018 [DOI: 10.1016/j.devcel.2016.01.018]
  22. Gancz D, Perlmoter G, Yaniv K (2020) Formation and growth of cardiac lymphatics during embryonic development, heart regeneration, and disease. Cold Spring Harb Perspect Biol 12(6):a037176. https://doi.org/10.1101/cshperspect.a037176 [DOI: 10.1101/cshperspect.a037176]
  23. Hill AA, Riley PR (2004) Differential regulation of Hand1 homodimer and Hand1-E12 heterodimer activity by the cofactor FHL2. Mol Cell Biol 24(22):9835���9847. https://doi.org/10.1128/MCB.24.22.9835-9847.2004 [DOI: 10.1128/MCB.24.22.9835-9847.2004]
  24. Chan KK, Tsui SK, Lee SM, Luk SC, Liew CC, Fung KP, Waye MM, Lee CY (1998) Molecular cloning and characterization of FHL2, a novel LIM domain protein preferentially expressed in human heart. Gene 210(2):345���350. https://doi.org/10.1016/s0378-1119(97)00644-6 [DOI: 10.1016/s0378-1119(97)00644-6]
  25. M��ller JM, Isele U, Metzger E, Rempel A, Moser M, Pscherer A, Breyer T, Holubarsch C, Buettner R, Sch��le R (2000) FHL2, a novel tissue-specific coactivator of the androgen receptor. EMBO J 19(3):359���369. https://doi.org/10.1093/emboj/19.3.359 [DOI: 10.1093/emboj/19.3.359]
  26. She M, Zhang J, Jiang T, Zhang Y, Liu Y, Tang M, Zeng Q (2022) The function of Lmpt in Drosophila heart tissue. Biochem Biophys Res Commun 5(612):15���21. https://doi.org/10.1016/j.bbrc.2022.04.098 [DOI: 10.1016/j.bbrc.2022.04.098]
  27. Chan KK, Tsui SK, Ngai SM, Lee SM, Kotaka M, Waye MM, Lee CY, Fung KP (2000) Protein-protein interaction of FHL2, a LIM domain protein preferentially expressed in human heart, with hCDC47. J Cell Biochem 76(3):499���508 [DOI: 10.1002/(SICI)1097-4644(20000301)76]
  28. Ng EK, Chan KK, Wong CH, Tsui SK, Ngai SM, Lee SM, Kotaka M, Lee CY, Waye MM, Fung KP (2002) Interaction of the heart-specific LIM domain protein, FHL2, with DNA-binding nuclear protein, hNP220. J Cell Biochem 84(3):556���566 [DOI: 10.1002/jcb.10041]
  29. Inagaki H, Matsushima Y, Nakamura K, Ohshima M, Kadowaki T, Kitagawa Y (1996) A large DNA-binding nuclear protein with RNA recognition motif and serine/arginine-rich domain. J Biol Chem 271(21):12525���12531. https://doi.org/10.1074/jbc.271.21.12525 [DOI: 10.1074/jbc.271.21.12525]
  30. Dong T, Zhao Y, Jin HF, Shen L, Lin Y, Si LL, Chen L, Liu JC (2022) SNTA1-deficient human cardiomyocytes demonstrate hypertrophic phenotype and calcium handling disorder. Stem Cell Res Ther 13(1):288. https://doi.org/10.1186/s13287-022-02955-4 [DOI: 10.1186/s13287-022-02955-4]
  31. Riaz M, Park J, Sewanan LR, Ren Y, Schwan J, Das SK, Pomianowski PT, Huang Y, Ellis MW, Luo J et al (2022) Muscle LIM protein force-sensing mediates Sarcomeric biomechanical signaling in human familial hypertrophic cardiomyopathy. Circulation 145(16):1238���1253. https://doi.org/10.1161/CIRCULATIONAHA.121.056265 [DOI: 10.1161/CIRCULATIONAHA.121.056265]
  32. Kamel R, Leroy J, Vandecasteele G, Fischmeister R (2023) Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure. Nat Rev Cardiol 20(2):90���108. https://doi.org/10.1038/s41569-022-00756-z [DOI: 10.1038/s41569-022-00756-z]
  33. Chen Y, Tan S, Liu M, Li J (2018) LncRNA TINCR is downregulated in diabetic cardiomyopathy and relates to cardiomyocyte apoptosis. Scand Cardiovasc J 52(6):335���339. https://doi.org/10.1080/14017431.2018.1546896 [DOI: 10.1080/14017431.2018.1546896]
  34. Campbell SG, Qyang Y, Hinson JT (2019) Sarcomere-directed calcium reporters in cardiomyocytes. Circ Res 124(8):1151���1153. https://doi.org/10.1161/CIRCRESAHA.119.314877 [DOI: 10.1161/CIRCRESAHA.119.314877]
  35. Zhong L, Chiusa M, Cadar AG, Lin A, Samaras S, Davidson JM, Lim CC (2015) Targeted inhibition of ANKRD1 disrupts sarcomeric ERK-GATA4 signal transduction and abrogates phenylephrine-induced cardiomyocyte hypertrophy. Cardiovasc Res 106(2):261���271. https://doi.org/10.1093/cvr/cvv108 [DOI: 10.1093/cvr/cvv108]
  36. Chen B, Zhong L, Roush SF, Pentassuglia L, Peng X, Samaras S, Davidson JM, Sawyer DB, Lim CC (2012) Disruption of a GATA4/Ankrd1 signaling axis in cardiomyocytes leads to sarcomere disarray: implications for anthracycline cardiomyopathy. PLoS ONE 7(4):e35743. https://doi.org/10.1371/journal.pone.0035743 [DOI: 10.1371/journal.pone.0035743]
  37. Heidenreich P (2022) Weight loss and cardiac reverse remodeling. J Am Coll Cardiol 80(16):1513���1515. https://doi.org/10.1016/j.jacc.2022.08.752 [DOI: 10.1016/j.jacc.2022.08.752]
  38. Donker DW, Maessen JG, Verheyen F, Ramaekers FC, Sp��tjens RL, Kuijpers H, Ramakers C, Schiffers PM, Vos MA, Crijns HJ et al (2007) Impact of acute and enduring volume overload on mechanotransduction and cytoskeletal integrity of canine left ventricular myocardium. Am J Physiol Heart Circ Physiol 292(5):H2324���H2332. https://doi.org/10.1152/ajpheart.00392.2006 [DOI: 10.1152/ajpheart.00392.2006]
  39. Donker DW, Volders PG, Arts T, Bekkers BC, Hofstra L, Sp��tjens RL, Beekman JD, Borgers M, Crijns HJ, Vos MA (2005) End-diastolic myofiber stress and ejection strain increase with ventricular volume overload���Serial in-vivo analyses in dogs with complete atrioventricular block. Basic Res Cardiol 100(4):372���382. https://doi.org/10.1007/s00395-005-0525-8 [DOI: 10.1007/s00395-005-0525-8]
  40. Dawid IB, Breen JJ, Toyama R (1998) LIM domains: multiple roles as adapters and functional modifiers in protein interactions. Trends Genet 14(4):156���162. https://doi.org/10.1016/s0168-9525(98)01424-3 [DOI: 10.1016/s0168-9525(98)01424-3]
  41. Dabiri GA, Turnacioglu KK, Sanger JM, Sanger JW (1997) Myofibrillogenesis visualized in living embryonic cardiomyocytes. Proc Natl Acad Sci U S A 94(17):9493���9498. https://doi.org/10.1073/pnas.94.17.9493 [DOI: 10.1073/pnas.94.17.9493]
  42. Li HY, Kotaka M, Kostin S, Lee SM, Kok LD, Chan KK, Tsui SK, Schaper J, Zimmermann R, Lee CY et al (2001) Translocation of a human focal adhesion LIM-only protein, FHL2, during myofibrillogenesis and identification of LIM2 as the principal determinants of FHL2 focal adhesion localization. Cell Motil Cytoskeleton 48(1):11���23. https://doi.org/10.1002/1097-0169(200101)48:1%3c11::AID-CM2%3e3.0.CO;2-I [DOI: 10.1002/1097-0169(200101)48]
  43. Allende ML, Yamashita T, Proia RL (2003) G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood 102(10):3665���3667. https://doi.org/10.1182/blood-2003-02-0460 [DOI: 10.1182/blood-2003-02-0460]
  44. Zhou X, Lu J, Wu B, Guo Z (2022) HOXA11-AS facilitates the proliferation, cell cycle process and migration of keloid fibroblasts through sponging miR-188-5p to regulate VEGFA. J Dermatol Sci 106(2):111���118. https://doi.org/10.1016/j.jdermsci.2022.04.004 [DOI: 10.1016/j.jdermsci.2022.04.004]
  45. Hayashi H, Nakagami H, Takami Y, Koriyama H, Mori M, Tamai K, Sun J, Nagao K, Morishita R, Kaneda Y (2009) FHL-2 suppresses VEGF-induced phosphatidylinositol 3-kinase/Akt activation via interaction with sphingosine kinase-1. Arterioscler Thromb Vasc Biol 29(6):909���914. https://doi.org/10.1161/ATVBAHA.108.178541 [DOI: 10.1161/ATVBAHA.108.178541]
  46. Zhang Y, Su SA, Li W, Ma Y, Shen J, Wang Y, Shen Y, Chen J, Ji Y, Xie Y et al (2021) Piezo1-mediated mechanotransduction promotes cardiac hypertrophy by impairing calcium homeostasis to activate calpain/calcineurin signaling. Hypertension 78(3):647���660. https://doi.org/10.1161/HYPERTENSIONAHA.121.17177 [DOI: 10.1161/HYPERTENSIONAHA.121.17177]
  47. Lyon RC, Zanella F, Omens JH, Sheikh F (2015) Mechanotransduction in cardiac hypertrophy and failure. Circ Res 116(8):1462���1476. https://doi.org/10.1161/CIRCRESAHA.116.304937 [DOI: 10.1161/CIRCRESAHA.116.304937]
  48. Bull M, Methawasin M, Strom J, Nair P, Hutchinson K, Granzier H (2016) Alternative splicing of Titin restores diastolic function in an HFpEF-like genetic murine model (Ttn��IAjxn). Circ Res 119(6):764���772. https://doi.org/10.1161/CIRCRESAHA.116.308904 [DOI: 10.1161/CIRCRESAHA.116.308904]
  49. Sun Y, Liu X, Huang W, Le S, Yan J (2024) Structural domain in the Titin N2B-us region binds to FHL2 in a force-activation dependent manner. Nat Commun 15(1):4496. https://doi.org/10.1038/s41467-024-48828-7 [DOI: 10.1038/s41467-024-48828-7]
  50. Strom J, Bull M, Gohlke J, Saripalli C, Methawasin M, Gotthardt M, Granzier H (2024) Titin���s cardiac-specific N2B element is critical to mechanotransduction during volume overload of the heart. J Mol Cell Cardiol. https://doi.org/10.1016/j.yjmcc.2024.04.006 [DOI: 10.1016/j.yjmcc.2024.04.006]
  51. Kellermayer D, Smith JE 3rd, Granzier H (2019) Titin mutations and muscle disease. Pflugers Arch 471(5):673���682. https://doi.org/10.1007/s00424-019-02272-5 [DOI: 10.1007/s00424-019-02272-5]
  52. Ware JS, Cook SA (2018) Role of titin in cardiomyopathy: from DNA variants to patient stratification. Nat Rev Cardiol 15(4):241���252. https://doi.org/10.1038/nrcardio.2017.190 [DOI: 10.1038/nrcardio.2017.190]
  53. Radke MH, Peng J, Wu Y, McNabb M, Nelson OL, Granzier H, Gotthardt M (2007) Targeted deletion of titin N2B region leads to diastolic dysfunction and cardiac atrophy. Proc Natl Acad Sci U S A 104(9):3444���3449. https://doi.org/10.1073/pnas.0608543104 [DOI: 10.1073/pnas.0608543104]
  54. Loescher CM, Hobbach AJ, Linke WA (2022) Titin (TTN): from molecule to modifications, mechanics, and medical significance. Cardiovasc Res 118(14):2903���2918. https://doi.org/10.1093/cvr/cvab328 [DOI: 10.1093/cvr/cvab328]
  55. Granzier HL, Radke MH, Peng J, Westermann D, Nelson OL, Rost K, King NM, Yu Q, Tsch��pe C, McNabb M et al (2009) Truncation of titin���s elastic PEVK region leads to cardiomyopathy with diastolic dysfunction. Circ Res 105(6):557���564. https://doi.org/10.1161/CIRCRESAHA.109.200964 [DOI: 10.1161/CIRCRESAHA.109.200964]
  56. Labeit S, Kolmerer B (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270(5234):293���296. https://doi.org/10.1126/science.270.5234.293 [DOI: 10.1126/science.270.5234.293]
  57. Wang C, Koo S, Park M, Vangelatos Z, Hoang P, Conklin BR, Grigoropoulos CP, Healy KE, Ma Z (2020) Maladaptive contractility of 3D human cardiac microtissues to mechanical nonuniformity. Adv Healthc Mater 9(8):e1901373. https://doi.org/10.1002/adhm.201901373 [DOI: 10.1002/adhm.201901373]
  58. Martin AA, Thompson BR, Hahn D, Angulski ABB, Hosny N, Cohen H, Metzger JM (2022) Cardiac sarcomere signaling in health and disease. Int J Mol Sci 23(24):16223. https://doi.org/10.3390/ijms232416223 [DOI: 10.3390/ijms232416223]
  59. Samson SC, Ferrer T, Jou CJ, Sachse FB, Shankaran SS, Shaw RM, Chi NC, Tristani-Firouzi M, Yost HJ (2013) 3-OST-7 regulates BMP-dependent cardiac contraction. PLoS Biol 11(12):e1001727. https://doi.org/10.1371/journal.pbio.1001727 [DOI: 10.1371/journal.pbio.1001727]
  60. Muller PA, Koscs�� B, Rajani GM, Stevanovic K, Berres ML, Hashimoto D, Mortha A, Leboeuf M, Li XM, Mucida D et al (2014) Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158(2):300���313. https://doi.org/10.1016/j.cell.2014.04.050 [DOI: 10.1016/j.cell.2014.04.050]
  61. Diebold I, Hennigs JK, Miyagawa K, Li CG, Nickel NP, Kaschwich M, Cao A, Wang L, Reddy S, Chen PI et al (2015) BMPR2 preserves mitochondrial function and DNA during reoxygenation to promote endothelial cell survival and reverse pulmonary hypertension. Cell Metab 21(4):596���608. https://doi.org/10.1016/j.cmet.2015.03.010 [DOI: 10.1016/j.cmet.2015.03.010]
  62. Hennigs JK, Cao A, Li CG, Shi M, Mienert J, Miyagawa K, K��rbelin J, Marciano DP, Chen PI, Roughley M et al (2021) PPAR��-p53-mediated vasculoregenerative program to reverse pulmonary hypertension. Circ Res 128(3):401���418. https://doi.org/10.1161/CIRCRESAHA.119.316339 [DOI: 10.1161/CIRCRESAHA.119.316339]
  63. De Lange WJ, Farrell ET, Hernandez JJ, Stempien A, Kreitzer CR, Jacobs DR, Petty DL, Moss RL, Crone WC, Ralphe JC (2023) cMyBP-C ablation in human engineered cardiac tissue causes progressive Ca2+-handling abnormalities. J Gen Physiol 155(4):e202213204. https://doi.org/10.1085/jgp.202213204 [DOI: 10.1085/jgp.202213204]
  64. Santini L, Coppini R, Cerbai E (2021) Ion channel impairment and myofilament Ca2+ sensitization: two parallel mechanisms underlying Arrhythmogenesis in hypertrophic cardiomyopathy. Cells 10(10):2789. https://doi.org/10.3390/cells10102789 [DOI: 10.3390/cells10102789]
  65. Kresin N, St��cker S, Kr��mer E, Flenner F, Mearini G, M��nch J, Patten M, Redwood C, Carrier L, Friedrich FW (2019) Analysis of contractile function of permeabilized human hypertrophic cardiomyopathy multicellular heart tissue. Front Physiol 28(10):239. https://doi.org/10.3389/fphys.2019.00239 [DOI: 10.3389/fphys.2019.00239]
  66. Nakamura M, Sadoshima J (2018) Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol 15(7):387���407. https://doi.org/10.1038/s41569-018-0007-y [DOI: 10.1038/s41569-018-0007-y]
  67. Liang Y, Bradford WH, Zhang J, Sheikh F (2018) Four and a half LIM domain protein signaling and cardiomyopathy. Biophys Rev 10(4):1073���1085. https://doi.org/10.1007/s12551-018-0434-3 [DOI: 10.1007/s12551-018-0434-3]
  68. Chu PH, Ruiz-Lozano P, Zhou Q, Cai C, Chen J (2000) Expression patterns of FHL/SLIM family members suggest important functional roles in skeletal muscle and cardiovascular system. Mech Dev 95(1���2):259���265. https://doi.org/10.1016/s0925-4773(00)00341-5 [DOI: 10.1016/s0925-4773(00)00341-5]
  69. Christodoulou DC, Wakimoto H, Onoue K, Eminaga S, Gorham JM, DePalma SR, Herman DS, Teekakirikul P, Conner DA, McKean DM et al (2014) 5���RNA-Seq identifies Fhl1 as a genetic modifier in cardiomyopathy. J Clin Invest 124(3):1364���1370. https://doi.org/10.1172/JCI70108 [DOI: 10.1172/JCI70108]
  70. Hojayev B, Rothermel BA, Gillette TG, Hill JA (2012) FHL2 binds calcineurin and represses pathological cardiac growth. Mol Cell Biol 32(19):4025���4034. https://doi.org/10.1128/MCB.05948-11 [DOI: 10.1128/MCB.05948-11]
  71. Okamoto R, Li Y, Noma K, Hiroi Y, Liu PY, Taniguchi M, Ito M, Liao JK (2013) FHL2 prevents cardiac hypertrophy in mice with cardiac-specific deletion of ROCK2. FASEB J 27(4):1439���1449. https://doi.org/10.1096/fj.12-217018 [DOI: 10.1096/fj.12-217018]
  72. Genini M, Schwalbe P, Scholl FA, Remppis A, Mattei MG, Sch��fer BW (1997) Subtractive cloning and characterization of DRAL, a novel LIM-domain protein down-regulated in rhabdomyosarcoma. DNA Cell Biol 16(4):433���442. https://doi.org/10.1089/dna.1997.16.433 [DOI: 10.1089/dna.1997.16.433]
  73. Palazzesi S, Musumeci M, Catalano L, Patrizio M, Stati T, Michienzi S, Di Certo MG, Mattei E, Vitelli L, Marano G (2006) Pressure overload causes cardiac hypertrophy in beta1-adrenergic and beta2-adrenergic receptor double knockout mice. J Hypertens 24(3):563���571. https://doi.org/10.1097/01.hjh.0000203843.41937.2a [DOI: 10.1097/01.hjh.0000203843.41937.2a]
  74. Luo Y, Jiang N, May HI, Luo X, Ferdous A, Schiattarella GG, Chen G, Li Q, Li C, Rothermel BA et al (2021) Cooperative binding of ETS2 and NFAT Links Erk1/2 and Calcineurin Signaling in the pathogenesis of cardiac hypertrophy. Circulation 144(1):34���51. https://doi.org/10.1161/CIRCULATIONAHA.120.052384 [DOI: 10.1161/CIRCULATIONAHA.120.052384]
  75. Maron BJ, Desai MY, Nishimura RA, Spirito P, Rakowski H, Towbin JA, Rowin EJ, Maron MS, Sherrid MV (2022) Diagnosis and evaluation of hypertrophic cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol 79(4):372���389. https://doi.org/10.1016/j.jacc.2021.12.002 [DOI: 10.1016/j.jacc.2021.12.002]
  76. Akhtar M, Elliott P (2018) The genetics of hypertrophic cardiomyopathy. Glob Cardiol Sci Pract 2018(3):36. https://doi.org/10.21542/gcsp.2018.36 [DOI: 10.21542/gcsp.2018.36]
  77. Gao J, Collyer J, Wang M, Sun F, Xu F (2020) Genetic dissection of hypertrophic cardiomyopathy with myocardial RNA-Seq. Int J Mol Sci 21(9):3040. https://doi.org/10.3390/ijms21093040 [DOI: 10.3390/ijms21093040]
  78. van der Feen DE, Weij M, Smit-van Oosten A, Jorna LM, Hagdorn QA, Bartelds B, Berger RM (2017) Shunt surgery, right heart catheterization, and vascular morphometry in a rat model for flow-induced pulmonary arterial hypertension. J Vis Exp 120:55065. https://doi.org/10.3791/55065 [DOI: 10.3791/55065]
  79. Hagdorn QAJ, Kurakula K, Koop AC, Bossers GPL, Mavrogiannis E, van Leusden T, van der Feen DE, de Boer RA, Goumans MTH, Berger RMF (2021) Volume load-induced right Ventricular failure in rats is not associated with myocardial fibrosis. Front Physiol 26(12):557514. https://doi.org/10.3389/fphys.2021.557514 [DOI: 10.3389/fphys.2021.557514]
  80. Tran MK, Kurakula K, Koenis DS, de Vries CJ (2016) Protein-protein interactions of the LIM-only protein FHL2 and functional implication of the interactions relevant in cardiovascular disease. Biochim Biophys Acta 1863(2):219���228. https://doi.org/10.1016/j.bbamcr.2015.11.002 [DOI: 10.1016/j.bbamcr.2015.11.002]
  81. Stathopoulou K, Schnittger J, Raabe J, Fleischer F, Mangels N, Piasecki A, Findlay J, Hartmann K, Krasemann S, Schlossarek S et al (2022) CMYA5 is a novel interaction partner of FHL2 in cardiac myocytes. FEBS J 289(15):4622���4645. https://doi.org/10.1111/febs.16402 [DOI: 10.1111/febs.16402]
  82. Benson MA, Tinsley CL, Waite AJ, Carlisle FA, Sweet SMM, Ehler E, George CH, Lai FA, Martin-Rendon E, Blake DJ (2017) Ryanodine receptors are part of the myospryn complex in cardiac muscle. Sci Rep 7(1):6312. https://doi.org/10.1038/s41598-017-06395-6 [DOI: 10.1038/s41598-017-06395-6]
  83. Farrell E, Armstrong AE, Grimes AC, Naya FJ, de Lange WJ, Ralphe JC (2018) Transcriptome analysis of cardiac hypertrophic growth in MYBPC3-null mice suggests early responders in hypertrophic remodeling. Front Physiol 25(9):1442. https://doi.org/10.3389/fphys.2018.01442 [DOI: 10.3389/fphys.2018.01442]
  84. Marrow BA, Cook SA, Prasad SK, McCann GP (2020) Emerging techniques for risk stratification in nonischemic dilated cardiomyopathy: JACC review topic of the week. J Am Coll Cardiol 75(10):1196���1207. https://doi.org/10.1016/j.jacc.2019.12.058 [DOI: 10.1016/j.jacc.2019.12.058]
  85. Huang L, Wu J, Lian B, Zhang D, Zhai Y, Cao L (2023) Successful robot-assisted laparoscopic resection of pheochromocytoma in a patient with dilated cardiomyopathy: a case report on extremely high-risk anesthesia management. Medicine (Baltimore) 102(41):e35467. https://doi.org/10.1097/MD.0000000000035467 [DOI: 10.1097/MD.0000000000035467]
  86. Schlesinger J, Schueler M, Grunert M, Fischer JJ, Zhang Q, Krueger T, Lange M, T��njes M, Dunkel I, Sperling SR. (2011). The cardiac transcription network modulated by Gata4, Mef2a, Nkx2.5, Srf, histone modifications, and microRNAs. PLoS Genet. https://doi.org/10.1371/journal.pgen.1001313 .
  87. Haas GJ, Zareba KM, Ni H, Bello-Pardo E, Huggins GS, Hershberger RE (2022) Study Principal Investigator (PI) and Co-Investigators: The Ohio State University. Validating an Idiopathic Dilated Cardiomyopathy Diagnosis Using Cardiovascular Magnetic Resonance The Dilated Cardiomyopathy Precision Medicine Study. Circ Heart Fail. https://doi.org/10.1161/CIRCHEARTFAILURE.121.008877 [DOI: 10.1161/CIRCHEARTFAILURE.121.008877]
  88. Bogomolovas J, Brohm K, ��elutkien�� J, Bal��i��nait�� G, Bironait�� D, Bukelskien�� V, Daunoravi��us D, Witt CC, Fielitz J, Grabauskien�� V et al (2015) Induction of Ankrd1 in dilated cardiomyopathy correlates with the heart failure progression. Biomed Res Int. https://doi.org/10.1155/2015/273936 [DOI: 10.1155/2015/273936]
  89. Radke MH, Polack C, Methawasin M, Fink C, Granzier HL, Gotthardt M (2019) Deleting full length titin versus the titin m-band region leads to differential mechanosignaling and cardiac phenotypes. Circulation 139(15):1813���1827. https://doi.org/10.1161/CIRCULATIONAHA.118.037588 [DOI: 10.1161/CIRCULATIONAHA.118.037588]
  90. Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14(10):R115. https://doi.org/10.1186/gb-2013-14-10-r115 [DOI: 10.1186/gb-2013-14-10-r115]
  91. Li C, Warren DT, Zhou C, De Silva S, Wilson DGS, Garcia-Maya M, Wheeler MA, Meinke P, Sawyer G, Ehler E, Wehnert M, Rao L, Zhang Q, Shanahan CM (2024) Nesprin-2 is a novel scaffold protein for telethonin and FHL-2 in the cardiomyocyte sarcomere. J Biol Chem 300(5):107254. https://doi.org/10.1016/j.jbc.2024.107254 [DOI: 10.1016/j.jbc.2024.107254]
  92. Liu CF, Tang WHW (2019) Epigenetics in cardiac hypertrophy and heart failure. JACC Basic Transl Sci 4(8):976���993. https://doi.org/10.1016/j.jacbts.2019.05.011 [DOI: 10.1016/j.jacbts.2019.05.011]
  93. Duan L, Liu C, Hu J, Liu Y, Wang J, Chen G, Li Z, Chen H (2018) Epigenetic mechanisms in coronary artery disease: The current state and prospects. Trends Cardiovasc Med 28(5):311���319. https://doi.org/10.1016/j.tcm.2017.12.012 [DOI: 10.1016/j.tcm.2017.12.012]
  94. Chen MS, Lee RT, Garbern JC (2022) Senescence mechanisms and targets in the heart. Cardiovasc Res 118(5):1173���1187. https://doi.org/10.1093/cvr/cvab161 [DOI: 10.1093/cvr/cvab161]
  95. Mongelli A, Panunzi S, Nesta M, Gottardi Zamperla M, Atlante S, Barbi V, Mongiardini V, Ferraro F, De Martino S, Cis L, Re A et al (2023) Distinguishable DNA methylation defines a cardiac-specific epigenetic clock. Clin Epigenetics 15(1):53. https://doi.org/10.1186/s13148-023-01467-z [DOI: 10.1186/s13148-023-01467-z]
  96. Zhou Y, Sun X, Yang G, Ding N, Pan X, Zhong A, Guo T, Peng Z, Chai X (2023) Sex-specific differences in the association between steps per day and all-cause mortality among a cohort of adult patients from the United States with congestive heart failure. Heart Lung. https://doi.org/10.1016/j.hrtlng.2023.07.009 [DOI: 10.1016/j.hrtlng.2023.07.009]
  97. Bacmeister L, Schwarzl M, Warnke S, Stoffers B, Blankenberg S, Westermann D, Lindner D (2019) Inflammation and fibrosis in murine models of heart failure. Basic Res Cardiol 114(3):19. https://doi.org/10.1007/s00395-019-0722-5 [DOI: 10.1007/s00395-019-0722-5]
  98. Anwaier G, Xie TT, Pan CS, Li AQ, Yan L, Wang D, Chen FK, Weng DZ, Sun K, Chang X et al (2022) QiShenYiQi Pill ameliorates cardiac fibrosis after pressure overload-induced cardiac hypertrophy by regulating FHL2 and the macrophage RP S19/TGF-��1 signaling pathway. Front Pharmacol 13(13):918335. https://doi.org/10.3389/fphar.2022.918335 [DOI: 10.3389/fphar.2022.918335]
  99. Ma Q, Yu H, Lin J, Sun Y, Shen X, Ren L (2014) Screening for cardiac HERG potassium channel interacting proteins using the yeast two-hybrid technique. Cell Biol Int 38(2):239���245. https://doi.org/10.1002/cbin.10196 [DOI: 10.1002/cbin.10196]
  100. Kupershmidt S, Yang IC, Sutherland M, Wells KS, Yang T, Yang P, Balser JR, Roden DM (2002) Cardiac-enriched LIM domain protein fhl2 is required to generate I(Ks) in a heterologous system. Cardiovasc Res 56(1):93���103. https://doi.org/10.1016/s0008-6363(02)00498-4 [DOI: 10.1016/s0008-6363(02)00498-4]
  101. McDonald TV, Yu Z, Ming Z, Palma E, Meyers MB, Wang KW, Goldstein SA, Fishman GI (1997) A minK-HERG complex regulates the cardiac potassium current I(Kr). Nature 388(6639):289���292. https://doi.org/10.1038/40882 [DOI: 10.1038/40882]
  102. Trudeau MC, Warmke JW, Ganetzky B, Robertson GA (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269(5220):92���95. https://doi.org/10.1126/science.7604285.Erratum.In:Science.1996May24;272(5265):1087 [DOI: 10.1126/science.7604285.Erratum.In]
  103. Asai T, Adachi N, Moriya T, Oki H, Maru T, Kawasaki M, Suzuki K, Chen S, Ishii R, Yonemori K et al (2021) Cryo-EM Structure of K+-Bound hERG Channel Complexed with the Blocker Astemizole. Structure 29(3):203-212.e4. https://doi.org/10.1016/j.str.2020.12.007 [DOI: 10.1016/j.str.2020.12.007]
  104. Schwartz PJ, Crotti L, Insolia R (2012) Long-QT syndrome: from genetics to management. Circ Arrhythm Electrophysiol 5(4):868���877. https://doi.org/10.1161/CIRCEP.111.962019 [DOI: 10.1161/CIRCEP.111.962019]
  105. Lin J, Lin S, Yu X, Choy PC, Shen X, Deng C, Kuang S, Wu J (2008) The four and a half LIM domain protein 2 interacts with and regulates the HERG channel. FEBS J 275(18):4531���4539. https://doi.org/10.1111/j.1742-4658.2008.06596.x [DOI: 10.1111/j.1742-4658.2008.06596.x]
  106. Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440(7083):463���469. https://doi.org/10.1038/nature04710 [DOI: 10.1038/nature04710]
  107. Rathjens FS, Blenkle A, Iyer LM, Renger A, Syeda F, Noack C, Jungmann A, Dewenter M, Toischer K, El-Armouche A et al (2021) Preclinical evidence for the therapeutic value of TBX5 normalization in arrhythmia control. Cardiovasc Res 117(8):1908���1922. https://doi.org/10.1093/cvr/cvaa239 [DOI: 10.1093/cvr/cvaa239]
  108. Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S, Conner DA, Gessler M, Nemer M, Seidman CE et al (2001) A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 106(6):709���721. https://doi.org/10.1016/s0092-8674(01)00493-7 [DOI: 10.1016/s0092-8674(01)00493-7]
  109. Mazzarotto F, Tayal U, Buchan RJ, Midwinter W, Wilk A, Whiffin N, Govind R, Mazaika E, de Marvao A, Dawes TJW et al (2020) Reevaluating the genetic contribution of monogenic dilated cardiomyopathy. Circulation 141(5):387���398. https://doi.org/10.1161/CIRCULATIONAHA.119.037661 [DOI: 10.1161/CIRCULATIONAHA.119.037661]
  110. Tabish AM, Arif M, Song T, Elbeck Z, Becker RC, Kn��ll R, Sadayappan S (2019) Association of intronic DNA methylation and hydroxymethylation alterations in the epigenetic etiology of dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 317(1):H168���H180. https://doi.org/10.1152/ajpheart.00758.2018 [DOI: 10.1152/ajpheart.00758.2018]
  111. Taub M, Mahmoudzadeh NH, Tennessen JM, Sudarshan S (2022) Renal oncometabolite L-2-hydroxyglutarate imposes a block in kidney tubulogenesis: Evidence for an epigenetic basis for the L-2HG-induced impairment of differentiation. Front Endocrinol (Lausanne) 5(13):932286. https://doi.org/10.3389/fendo.2022.932286 [DOI: 10.3389/fendo.2022.932286]
  112. Powell SR (2006) The ubiquitin-proteasome system in cardiac physiology and pathology. Am J Physiol Heart Circ Physiol 291(1):H1���H19. https://doi.org/10.1152/ajpheart.00062.2006 [DOI: 10.1152/ajpheart.00062.2006]
  113. Fielitz J, van Rooij E, Spencer JA, Shelton JM, Latif S, van der Nagel R, Bezprozvannaya S, de Windt L, Richardson JA, Bassel-Duby R et al (2007) Loss of muscle-specific RING-finger 3 predisposes the heart to cardiac rupture after myocardial infarction. Proc Natl Acad Sci U S A 104(11):4377���4382. https://doi.org/10.1073/pnas.0611726104 [DOI: 10.1073/pnas.0611726104]
  114. Kedar V, McDonough H, Arya R, Li HH, Rockman HA, Patterson C (2004) Muscle-specific RING finger 1 is a bona fide ubiquitin ligase that degrades cardiac troponin I. Proc Natl Acad Sci U S A 101(52):18135���18140. https://doi.org/10.1073/pnas.0404341102 [DOI: 10.1073/pnas.0404341102]
  115. Oliv�� M, Abdul-Hussein S, Oldfors A, Gonz��lez-Costello J, van der Ven PF, F��rst DO, Gonz��lez L, Moreno D, Torrej��n-Escribano B, Ali�� J et al (2015) New cardiac and skeletal protein aggregate myopathy associated with combined MuRF1 and MuRF3 mutations. Hum Mol Genet 24(13):3638���3650. https://doi.org/10.1093/hmg/ddv108 [DOI: 10.1093/hmg/ddv108]
  116. Brundel BJJM, Ai X, Hills MT, Kuipers MF, Lip GYH, de Groot NMS (2022) Atrial fibrillation Nat Rev Dis Primers 8(1):21. https://doi.org/10.1038/s41572-022-00347-9 [DOI: 10.1038/s41572-022-00347-9]
  117. Liu Y, Bai F, Tang Z, Liu N, Liu Q (2021) Integrative transcriptomic, proteomic, and machine learning approach to identifying feature genes of atrial fibrillation using atrial samples from patients with valvular heart disease. BMC Cardiovasc Disord 21(1):52. https://doi.org/10.1186/s12872-020-01819-0 [DOI: 10.1186/s12872-020-01819-0]
  118. Gao X, Cai X, Yang Y, Zhou Y, Zhu W (2021) Diagnostic accuracy of the HAS-BLED bleeding score in VKA- or DOAC-treated patients with atrial fibrillation: a systematic review and meta-analysis. Front Cardiovasc Med 22(8):757087. https://doi.org/10.3389/fcvm.2021.757087 [DOI: 10.3389/fcvm.2021.757087]
  119. Jiang X, Yan M (2021) Surgical treatment for improved 1-year survival in patients with primary cardiac sarcoma. Anatol J Cardiol 25(11):796���802. https://doi.org/10.5152/AnatolJCardiol.2021.60378 [DOI: 10.5152/AnatolJCardiol.2021.60378]

MeSH Term

LIM-Homeodomain Proteins
Humans
Muscle Proteins
Transcription Factors
Animals
Heart
Myocytes, Cardiac
Gene Expression Regulation, Developmental

Chemicals

LIM-Homeodomain Proteins
Muscle Proteins
FHL2 protein, human
Transcription Factors

Word Cloud

Created with Highcharts 10.0.0FHL2cardiacheartdevelopmentLIMinvolvedvariouscelltherapeuticCardiacFour-and-a-halfdomainprotein2crucialfactormorphogenesisprocessdevelopscomplexstructureexpressedtissuesembryonicincludingdevelopingshownplayimportantrolesproliferationdifferentiationmigrationinteractsmultipleproteinsregulatecoactivatorcorepressorspecificationdeterminationfatecardiomyocytegrowthremodelingmyofibrillogenesisregulationHERGchannelsTargetingimplicationsimprovefunctioncontrolarrhythmiasalleviatefailuremaintainintegritypathologicalconditionsidentificationsignaturegeneatrialfibrillationsuggestspotentialdiagnosticmarkertargetcommonarrhythmiaUnlockingsecretsfunction:criticalroleContractilityFibrosisHypertrophy

Similar Articles

Cited By