Chytrid fungi infecting Arctic microphytobenthic communities under varying salinity conditions.

Doris Ilicic, Jason Woodhouse, Ulf Karsten, Katherina Schimani, Jonas Zimmermann, Hans-Peter Grossart
Author Information
  1. Doris Ilicic: Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany.
  2. Jason Woodhouse: Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany.
  3. Ulf Karsten: Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany.
  4. Katherina Schimani: Botanic Garden and Botanical Museum Berlin, Freie Universit��t Berlin, Berlin, Germany.
  5. Jonas Zimmermann: Botanic Garden and Botanical Museum Berlin, Freie Universit��t Berlin, Berlin, Germany.
  6. Hans-Peter Grossart: Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Neuglobsow, Germany. hgrossart@igb-berlin.de.

Abstract

This study aimed to investigate the presence and diversity of fungal parasites in Arctic coastal microphytobenthic communities. These communities represent a key component in the functioning of Arctic trophic food webs. Fungal parasites, particularly Chytridiomycota (chytrids), play significant roles by controlling microalgal bloom events, impacting genetic diversity, modifying microbial interactions, and accelerating nutrient and energy transfer to higher trophic levels. In the context of rapid Arctic warming and increased glacier meltwater, which significantly affects these communities, we used high-throughput sequencing to explore fungal community composition. Our results show that chytrids dominate fungal communities in Arctic benthic habitats and that the overall fungal diversity is primarily influenced by the salinity gradient. Chytrid representation is positively correlated with the presence of potential benthic diatom (Surirella, Nitzschia, Navicula) and green algae (Ulvophyceae) hosts, while microscopic observations provide further evidence for the presence of active chytrid infections.

Keywords

References

  1. Microb Ecol. 2023 Jan;85(1):9-23 [PMID: 34854932]
  2. Appl Environ Microbiol. 2005 Nov;71(11):6885-99 [PMID: 16269723]
  3. J Eukaryot Microbiol. 2018 Nov;65(6):870-881 [PMID: 29752884]
  4. Bioinformatics. 2019 Mar 15;35(6):1064-1066 [PMID: 30169561]
  5. Environ Microbiol. 2016 Jun;18(6):2001-9 [PMID: 26754171]
  6. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  7. Bioinformatics. 2012 Jul 15;28(14):1823-9 [PMID: 22556368]
  8. Environ Microbiol. 2019 Mar;21(3):949-958 [PMID: 30507060]
  9. Sci Rep. 2015 Oct 23;5:14524 [PMID: 26494429]
  10. ISME J. 2013 Oct;7(10):2057-9 [PMID: 23657362]
  11. Microb Ecol. 2016 Apr;71(3):543-54 [PMID: 26492897]
  12. Front Microbiol. 2022 Mar 04;13:805694 [PMID: 35308360]
  13. Commun Biol. 2020 Apr 21;3(1):183 [PMID: 32317738]
  14. Sci Rep. 2023 Mar 9;13(1):3973 [PMID: 36894609]
  15. J Fungi (Basel). 2023 Apr 03;9(4): [PMID: 37108892]
  16. J Fungi (Basel). 2022 Mar 11;8(3): [PMID: 35330293]
  17. PLoS Comput Biol. 2012;8(9):e1002687 [PMID: 23028285]
  18. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  19. Sci Rep. 2016 Jul 22;6:30120 [PMID: 27444055]
  20. J Eukaryot Microbiol. 2008 Mar-Apr;55(2):69-74 [PMID: 18318858]
  21. BMC Bioinformatics. 2015 Oct 06;16:322 [PMID: 26445311]
  22. Soil Biol Biochem. 2012 Feb;45(2):79-88 [PMID: 22308003]
  23. Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190369 [PMID: 32862805]
  24. Appl Environ Microbiol. 2020 Dec 11;87(5): [PMID: 33310722]
  25. Proc Biol Sci. 2015 Nov 22;282(1819): [PMID: 26582030]
  26. ISME J. 2019 Jun;13(6):1484-1496 [PMID: 30745572]
  27. J Fungi (Basel). 2023 Nov 09;9(11): [PMID: 37998900]
  28. Environ Microbiol. 2017 Oct;19(10):3802-3822 [PMID: 28618196]
  29. Sci Rep. 2021 Nov 8;11(1):21785 [PMID: 34750421]
  30. Elife. 2022 Mar 01;11: [PMID: 35227375]
  31. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  32. ISME J. 2022 Sep;16(9):2242-2254 [PMID: 35764676]
  33. Proc Natl Acad Sci U S A. 2021 Jun 8;118(23): [PMID: 34074785]
  34. Sci Rep. 2016 Oct 13;6:35039 [PMID: 27733762]
  35. Front Microbiol. 2019 Mar 29;10:680 [PMID: 30984159]
  36. Environ Microbiol. 2017 Feb;19(2):475-484 [PMID: 27207498]
  37. Protist. 2020 Nov;171(5):125768 [PMID: 33126022]
  38. Protist. 2018 Feb;169(1):122-140 [PMID: 29477669]
  39. ISME Commun. 2022 Sep 30;2(1):93 [PMID: 37938757]
  40. Front Microbiol. 2014 Apr 22;5:166 [PMID: 24795703]
  41. PLoS One. 2014 Apr 14;9(4):e94643 [PMID: 24732324]
  42. Fungal Ecol. 2016 Feb;19:59-76 [PMID: 28083074]

MeSH Term

Arctic Regions
Salinity
Chytridiomycota
Diatoms
Mycobiome
Ecosystem
Biodiversity
Food Chain

Word Cloud

Created with Highcharts 10.0.0ArcticcommunitiesfungalpresencediversityparasitesmicrophytobenthictrophicFungalchytridsbenthicsalinityChytridfungistudyaimedinvestigatecoastalrepresentkeycomponentfunctioningfoodwebsparticularlyChytridiomycotaplaysignificantrolescontrollingmicroalgalbloomeventsimpactinggeneticmodifyingmicrobialinteractionsacceleratingnutrientenergytransferhigherlevelscontextrapidwarmingincreasedglaciermeltwatersignificantlyaffectsusedhigh-throughputsequencingexplorecommunitycompositionresultsshowdominatehabitatsoverallprimarilyinfluencedgradientrepresentationpositivelycorrelatedpotentialdiatomSurirellaNitzschiaNaviculagreenalgaeUlvophyceaehostsmicroscopicobservationsprovideevidenceactivechytridinfectionsinfectingvaryingconditionsChytridsMicrophytobenthosZoosporic

Similar Articles

Cited By