Comparison of distinct gut bacterial communities in different stage of prediapause and nondiapause larvae in .

Jianyu Wang, Hainan Chong, Dong Li, Shaowei Cui, Yanni Song, Jinyu He, Tingbei Bo, Dandan Zhang, Haijun Xiao
Author Information
  1. Jianyu Wang: School of Grassland Science, Beijing Forestry University, Beijing, China.
  2. Hainan Chong: School of Grassland Science, Beijing Forestry University, Beijing, China.
  3. Dong Li: School of Grassland Science, Beijing Forestry University, Beijing, China.
  4. Shaowei Cui: School of Grassland Science, Beijing Forestry University, Beijing, China.
  5. Yanni Song: School of Grassland Science, Beijing Forestry University, Beijing, China.
  6. Jinyu He: School of Grassland Science, Beijing Forestry University, Beijing, China.
  7. Tingbei Bo: School of Grassland Science, Beijing Forestry University, Beijing, China.
  8. Dandan Zhang: School of Grassland Science, Beijing Forestry University, Beijing, China.
  9. Haijun Xiao: School of Grassland Science, Beijing Forestry University, Beijing, China.

Abstract

Introduction: Symbiotic microorganisms in insects regulate multiple physiological functions, widely participating in nutrient metabolism, immune regulation, and crucial regulatory roles in development. However, little is known about how microbial factors might respond to the preparation of insect diapause.
Methods: The gut bacterial communities of larvae induced at different photoperiod of long (LD16:8, nondiapause) and short (LD12:12, prediapause) daylength were compared, by 16S rRNA Illumina MiSeq.
Results: A total number of 42 phylum, 78 classes, 191 orders, 286 families, 495 genera, and 424 species were identified in the intestinal bacterial community of larvae. Alpha diversity and beta diversity analyses revealed significant differences between nondiapause and prediapause larvae. In non-diapause larvae, the dominant intestinal bacteria were Firmicutes and Proteobacteria. In specific, in 3rd and 4th instar larvae, the main intestinal bacteria were , while in 5th instar, it was . For the prediapause larvae, the dominant phylum in 3rd instar larvae was Firmicutes, with the dominant genus of , while in 4th and 5th instar larvae was Bacteroidota, with the dominant genus 4th instar was , and in 5th instar was . KEGG functional prediction analysis revealed that functional bacterial groups involved in metabolism had the highest abundance values. Specifically, the amino acid metabolism of metabolism-related functional genes in the 3rd instar prediapause larvae was significantly lower than that in the 4th and 5th instar prediapause larvae and the non-diapause treatment. However, the carbohydrate metabolism in 3rd instar prediapause larvae was significantly higher than that in 4th and 5th instar prediapause larvae and non-diapause treatments. The dominant bacterial phylum in the prediapause larvae at different stages of was varied, and there were significant differences in community diversity and richness.
Discussion: These results suggest a complex interaction between the hosts' physiological state and its gut microbiota, indicating that bacterial communities may assist insects in adapting to diapause preparation by regulating their metabolic levels. This study lays the foundation for further understanding the physiological mechanisms by which intestinal microorganisms regulate overwintering dormancy in the .

Keywords

References

  1. Front Microbiol. 2024 Mar 25;15:1343265 [PMID: 38591043]
  2. Pest Manag Sci. 2024 Sep;80(9):4650-4664 [PMID: 38775404]
  3. Proc Biol Sci. 2018 May 16;285(1878): [PMID: 29720413]
  4. Microbiome. 2021 Apr 9;9(1):85 [PMID: 33836829]
  5. Fly (Austin). 2018 Jan 2;12(1):34-40 [PMID: 29455581]
  6. Genome Biol. 2011 Jun 24;12(6):R60 [PMID: 21702898]
  7. Biol Bull. 2019 Oct;237(2):180-191 [PMID: 31714855]
  8. J Appl Microbiol. 2022 Sep;133(3):1620-1635 [PMID: 35717576]
  9. Environ Microbiol. 2019 Aug;21(8):3172-3182 [PMID: 31237728]
  10. Science. 2011 Nov 4;334(6056):670-4 [PMID: 22053049]
  11. ISME J. 2020 Mar;14(3):676-687 [PMID: 31767943]
  12. Curr Microbiol. 2020 Sep;77(9):1976-1986 [PMID: 32535651]
  13. Genetics. 1996 Jun;143(2):961-72 [PMID: 8725242]
  14. BMC Genomics. 2016 Jan 13;17:50 [PMID: 26758761]
  15. Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4416-21 [PMID: 23442387]
  16. Annu Rev Entomol. 2002;47:93-122 [PMID: 11729070]
  17. Commun Biol. 2022 Sep 15;5(1):973 [PMID: 36109578]
  18. J Exp Biol. 2013 Nov 1;216(Pt 21):4082-90 [PMID: 23913949]
  19. Insect Sci. 2016 Jun;23(3):438-51 [PMID: 26826557]
  20. Oecologia. 2015 Jan;177(1):181-90 [PMID: 25362581]
  21. Environ Entomol. 2012 Feb;41(1):172-9 [PMID: 22525073]
  22. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  23. Appl Environ Microbiol. 2007 Apr;73(8):2708-17 [PMID: 17293520]
  24. IEEE Trans Neural Netw. 2000;11(4):1003-8 [PMID: 18249827]
  25. Front Microbiol. 2018 Mar 27;9:556 [PMID: 29636736]
  26. J Insect Physiol. 2004 Apr;50(4):295-301 [PMID: 15081822]
  27. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  28. Front Microbiol. 2020 Jul 22;11:1703 [PMID: 32793164]
  29. Gigascience. 2013 Nov 26;2(1):16 [PMID: 24280061]
  30. J Exp Biol. 2017 Nov 15;220(Pt 22):4204-4212 [PMID: 28939559]
  31. J Insect Physiol. 2018 Apr;106(Pt 2):147-152 [PMID: 27894937]
  32. Mol Ecol. 2014 Sep;23(18):4658-69 [PMID: 25130694]
  33. Annu Rev Entomol. 2011;56:103-21 [PMID: 20690828]
  34. Microbiome. 2020 Mar 16;8(1):38 [PMID: 32178739]
  35. J Exp Biol. 2011 Dec 1;214(Pt 23):3948-59 [PMID: 22071185]
  36. Environ Microbiol. 2014 Dec;16(12):3583-607 [PMID: 25052143]
  37. Stand Genomic Sci. 2012 Oct 10;7(1):59-69 [PMID: 23450133]
  38. Annu Rev Entomol. 2015 Jan 7;60:17-34 [PMID: 25341109]
  39. Annu Rev Entomol. 2015 Jan 7;60:123-40 [PMID: 25341105]
  40. Microb Ecol Health Dis. 2015 May 29;26:27663 [PMID: 26028277]
  41. Proc Biol Sci. 2010 Sep 7;277(1694):2683-92 [PMID: 20410035]
  42. Microbiol Spectr. 2023 Aug 17;11(4):e0278022 [PMID: 37358445]
  43. AMB Express. 2015 Feb 25;5:15 [PMID: 25852992]
  44. Science. 2014 Aug 29;345(6200):1011 [PMID: 25170145]
  45. Am J Physiol Regul Integr Comp Physiol. 2013 Jan 1;304(1):R33-42 [PMID: 23152108]
  46. J Exp Zool A Comp Exp Biol. 2003 Jul 1;298(1):23-31 [PMID: 12840836]
  47. Microbiome. 2018 May 17;6(1):90 [PMID: 29773078]
  48. J Insect Physiol. 2006 Aug;52(8):816-25 [PMID: 16797581]
  49. Nat Biotechnol. 2013 Sep;31(9):814-21 [PMID: 23975157]
  50. J Med Entomol. 2022 Mar 16;59(2):648-658 [PMID: 34747999]
  51. Insect Mol Biol. 2010 Feb;19 Suppl 1:75-89 [PMID: 20167019]
  52. FEMS Microbiol Rev. 2013 Sep;37(5):699-735 [PMID: 23692388]
  53. Insect Mol Biol. 2010 Mar;19 Suppl 2:249-58 [PMID: 20482655]
  54. Sci Total Environ. 2022 Sep 10;838(Pt 2):156220 [PMID: 35623528]
  55. Int J Food Microbiol. 2005 Dec 15;105(3):433-44 [PMID: 16102864]

Word Cloud

Created with Highcharts 10.0.0larvaeprediapauseinstarbacterialintestinaldominant4th5thmetabolismgutcommunitiesdiversity3rdfunctionalphysiologicaldifferentnondiapausephylumnon-diapausebacteriamicroorganismsinsectsregulateHowevermicrobialpreparationdiapausecommunityrevealedsignificantdifferencesFirmicutesgenuspredictionsignificantlyIntroduction:SymbioticmultiplefunctionswidelyparticipatingnutrientimmuneregulationcrucialregulatoryrolesdevelopmentlittleknownfactorsmightrespondinsectMethods:inducedphotoperiodlongLD16:8shortLD12:12daylengthcompared16SrRNAIlluminaMiSeqResults:totalnumber4278classes191orders286families495genera424speciesidentifiedAlphabetaanalysesProteobacteriaspecificmainBacteroidotaKEGGanalysisgroupsinvolvedhighestabundancevaluesSpecificallyaminoacidmetabolism-relatedgeneslowertreatmentcarbohydratehighertreatmentsstagesvariedrichnessDiscussion:resultssuggestcomplexinteractionhosts'statemicrobiotaindicatingmayassistadaptingregulatingmetaboliclevelsstudylaysfoundationunderstandingmechanismsoverwinteringdormancyComparisondistinctstageLoxostegesticticalisseasonaladaptation

Similar Articles

Cited By

No available data.