Biofilm-mediated antibiotic tolerance in from spinal cord stimulation device-related infections.

Francesca Sivori, Ilaria Cavallo, Mauro Truglio, Lorella Pelagalli, Valerio Mariani, Giorgia Fabrizio, Elva Abril, Iolanda Santino, Piera Assunta Fradiani, Mariacarmela Solmone, Fulvia Pimpinelli, Luigi Toma, Roberto Arcioni, Roberto Alberto De Blasi, Enea Gino Di Domenico
Author Information
  1. Francesca Sivori: Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy.
  2. Ilaria Cavallo: Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy.
  3. Mauro Truglio: Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy.
  4. Lorella Pelagalli: Sultan Qaboos Comprehensive Cancer Care and Research Centre (SQCCCR), Mascate, Oman.
  5. Valerio Mariani: Dipartimento di Scienze Medico-Chirurgiche e Medicina Traslazionale, Sapienza University, Rome, Italy.
  6. Giorgia Fabrizio: Department of Biology and Biotechnology "C. Darwin", Sapienza University, Rome, Italy.
  7. Elva Abril: Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy.
  8. Iolanda Santino: Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University, Microbiology Unit, Sant'Andrea Hospital, Rome, Italy.
  9. Piera Assunta Fradiani: Microbiology Unit, Sant'Andrea Hospital, Rome, Italy.
  10. Mariacarmela Solmone: Microbiology Unit, Sant'Andrea Hospital, Rome, Italy.
  11. Fulvia Pimpinelli: Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy.
  12. Luigi Toma: Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute IRCCS, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy.
  13. Roberto Arcioni: Sultan Qaboos Comprehensive Cancer Care and Research Centre (SQCCCR), Mascate, Oman.
  14. Roberto Alberto De Blasi: Dipartimento di Scienze Medico-Chirurgiche e Medicina Traslazionale, Sapienza University, Rome, Italy.
  15. Enea Gino Di Domenico: Microbiology and Virology Unit, San Gallicano Dermatological Institute, IRCCS, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy. ORCID

Abstract

is a predominant cause of infections in individuals with spinal cord stimulation (SCS) devices. Biofilm formation complicates these infections, commonly requiring both surgical and antibiotic treatments. This study explored the biofilm matrix composition and antimicrobial susceptibility of planktonic and biofilm-growing isolates from individuals with SCS-related infections. Whole-genome sequencing (WGS) examined genotypes, virulome, resistome, and the pan-genome structure. The study also analyzed biofilm matrix composition, early surface adhesion, hemolytic activity, and antibiotic-susceptibility testing. WGS revealed genetic diversity among isolates. One isolate, though oxacillin susceptible, contained the A gene. The median number of virulence factor genes per isolate was 58. All isolates harbored the biofilm-related A/D genes. When assessing phenotypic characteristics, all strains demonstrated the ability to form biofilms . The antimicrobial susceptibility profile indicated that oxacillin, rifampin, and teicoplanin showed the highest efficacy against biofilm. Conversely, high biofilm tolerance was observed for vancomycin, trimethoprim/sulfamethoxazole, and levofloxacin. These findings suggest that isolates are highly virulent and produce robust biofilms. In cases of suspected biofilm infections caused by , vancomycin should not be the primary choice due to its low activity against biofilm. Instead, oxacillin, rifampin, and teicoplanin appear to be more effective options to manage SCS infections.IMPORTANCESCS devices are increasingly used to manage chronic pain, but infections associated with these devices, particularly those caused by , present significant clinical challenges. These infections are often complicated by biofilm formation, which protects bacteria from immune responses and antibiotic treatments, making them difficult to eradicate. Understanding the genetic diversity, virulence, and biofilm characteristics of isolates from SCS infections is critical to improving treatment strategies. Our study highlights the need to reconsider commonly used antibiotics like vancomycin, which shows reduced activity against biofilm-growing cells. Identifying more effective alternatives, such as oxacillin, rifampin, and teicoplanin, provides valuable insight for clinicians when managing biofilm-related infections in patients with SCS implants. This research contributes to the growing evidence that biofilm formation is crucial in treating device-related infections, emphasizing the importance of tailoring antimicrobial strategies to the biofilm phenotype.

Keywords

References

  1. Neurosurg Focus. 2019 Aug 1;47(2):E6 [PMID: 31370027]
  2. J Bacteriol. 1996 Jan;178(1):175-83 [PMID: 8550413]
  3. Front Microbiol. 2019 Jun 19;10:1388 [PMID: 31275293]
  4. Microbiol Resour Announc. 2018 Aug 9;7(5): [PMID: 30533883]
  5. Environ Microbiol. 2018 Sep;20(9):3141-3153 [PMID: 29633455]
  6. Microb Pathog. 2013 Aug-Sep;61-62:66-72 [PMID: 23711963]
  7. World J Microbiol Biotechnol. 2021 Nov 27;38(1):6 [PMID: 34837116]
  8. J Clin Microbiol. 2005 Oct;43(10):5150-7 [PMID: 16207977]
  9. JAMA. 1998 May 20;279(19):1537-41 [PMID: 9605897]
  10. World Neurosurg. 2019 Aug;128:e87-e97 [PMID: 30986582]
  11. Annu Rev Med. 2013;64:175-88 [PMID: 22906361]
  12. Nucleic Acids Res. 2017 Jan 4;45(D1):D566-D573 [PMID: 27789705]
  13. Clin Microbiol Infect. 2010 Sep;16(9):1427-34 [PMID: 20041904]
  14. Neuromodulation. 2017 Jan;20(1):31-50 [PMID: 28042909]
  15. Int J Mol Sci. 2021 Aug 23;22(16): [PMID: 34445806]
  16. Int J Med Microbiol. 2002 Jul;292(2):107-13 [PMID: 12195733]
  17. Pathogens. 2022 Jul 15;11(7): [PMID: 35890046]
  18. BMC Microbiol. 2019 Oct 21;19(1):228 [PMID: 31638894]
  19. Sci Rep. 2022 Dec 6;12(1):21104 [PMID: 36473894]
  20. Biofilm. 2024 Feb 29;7:100189 [PMID: 38481761]
  21. Mol Biol Evol. 2021 Dec 9;38(12):5825-5829 [PMID: 34597405]
  22. Clin Infect Dis. 2009 Mar 15;48(6):713-21 [PMID: 19207079]
  23. Bioinformatics. 2015 Nov 15;31(22):3691-3 [PMID: 26198102]
  24. mSystems. 2023 Jun 29;8(3):e0124222 [PMID: 37184650]
  25. Microbiol Spectr. 2022 Apr 27;10(2):e0035122 [PMID: 35416701]
  26. J Biomed Sci. 2016 Mar 08;23:33 [PMID: 26952716]
  27. Microbiol Mol Biol Rev. 2020 Aug 12;84(3): [PMID: 32792334]
  28. Nat Rev Microbiol. 2023 Jun;21(6):380-395 [PMID: 36707725]
  29. J Antimicrob Chemother. 2005 Oct;56(4):692-7 [PMID: 16141276]
  30. Front Cell Infect Microbiol. 2023 Jun 14;13:1194254 [PMID: 37389215]
  31. Int J Antimicrob Agents. 2019 Feb;53(2):143-151 [PMID: 30315918]
  32. Front Microbiol. 2021 Oct 29;12:750460 [PMID: 34777301]
  33. Clin Microbiol Infect. 2010 Jan;16(1):74-7 [PMID: 19519839]
  34. Microorganisms. 2022 Jun 21;10(7): [PMID: 35888978]
  35. Clin Infect Dis. 2020 Jun 10;70(12):2727-2735 [PMID: 31598641]
  36. Pain Physician. 2013 May-Jun;16(3):251-7 [PMID: 23703411]
  37. Sci Rep. 2018 Jun 28;8(1):9573 [PMID: 29955077]
  38. Front Microbiol. 2021 Oct 22;12:749685 [PMID: 34745053]
  39. Int J Antimicrob Agents. 2015 Apr;45(4):368-75 [PMID: 25614358]
  40. Bioinformatics. 2018 Sep 1;34(17):i884-i890 [PMID: 30423086]
  41. Neuromodulation. 2017 Jul;20(5):444-449 [PMID: 28466562]
  42. Antibiotics (Basel). 2022 Sep 18;11(9): [PMID: 36140047]
  43. J Glob Antimicrob Resist. 2015 Dec;3(4):283-285 [PMID: 27842874]
  44. Neuromodulation. 2017 Aug;20(6):553-557 [PMID: 28726312]
  45. Clin Microbiol Rev. 2013 Jul;26(3):422-47 [PMID: 23824366]
  46. Anesthesiology. 2004 Jun;100(6):1582-94 [PMID: 15166581]
  47. Pathogens. 2021 Feb 12;10(2): [PMID: 33673230]
  48. Int J Infect Dis. 2015 Apr;33:79-81 [PMID: 25578263]
  49. J Med Microbiol. 2011 May;60(Pt 5):600-604 [PMID: 21292856]
  50. PLoS One. 2022 Feb 16;17(2):e0260272 [PMID: 35171906]
  51. Surg Infect (Larchmt). 2020 May;21(4):378-383 [PMID: 31816270]
  52. mBio. 2013 Aug 13;4(4): [PMID: 23943757]
  53. J Antibiot (Tokyo). 2015 Jan;68(1):15-22 [PMID: 25074658]
  54. Infect Control Hosp Epidemiol. 2006 Feb;27(2):127-32 [PMID: 16465628]
  55. Skin Res Technol. 2019 Jan;25(1):25-29 [PMID: 29863296]
  56. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  57. Expert Rev Anti Infect Ther. 2017 Mar;15(3):241-255 [PMID: 27910709]
  58. Neuromodulation. 2017 Aug;20(6):558-562 [PMID: 28493599]
  59. Eur J Clin Microbiol Infect Dis. 2010 Aug;29(8):1025-33 [PMID: 20549534]
  60. Neuromodulation. 2017 Aug;20(6):563-566 [PMID: 28116797]
  61. Comput Struct Biotechnol J. 2020 Nov 04;18:3324-3334 [PMID: 33240473]
  62. Int J Antimicrob Agents. 2009 Nov;34(5):482-5 [PMID: 19713086]
  63. Antimicrob Agents Chemother. 2019 Oct 22;63(11): [PMID: 31501145]
  64. Microorganisms. 2020 Sep 03;8(9): [PMID: 32899267]
  65. J Bacteriol. 2003 Jun;185(11):3307-16 [PMID: 12754228]
  66. Antimicrob Resist Infect Control. 2019 May 16;8:76 [PMID: 31131107]
  67. Genome Med. 2018 Nov 13;10(1):82 [PMID: 30424799]
  68. Clin Infect Dis. 2013 Jan;56(1):e1-e25 [PMID: 23223583]
  69. Nucleic Acids Res. 2016 Jan 4;44(D1):D694-7 [PMID: 26578559]
  70. Front Microbiol. 2016 Sep 21;7:1429 [PMID: 27708625]
  71. Microbiol Mol Biol Rev. 2009 Jun;73(2):310-47 [PMID: 19487730]
  72. Curr Pain Headache Rep. 2024 Jan;28(1):1-9 [PMID: 37855944]
  73. Microorganisms. 2022 Sep 19;10(9): [PMID: 36144469]
  74. Proc Natl Acad Sci U S A. 2016 Jun 28;113(26):E3801-9 [PMID: 27286824]
  75. Antimicrob Agents Chemother. 2019 Jul 25;63(8): [PMID: 31109981]
  76. Nat Rev Microbiol. 2022 Oct;20(10):621-635 [PMID: 35115704]
  77. Antimicrob Agents Chemother. 2014 Nov;58(11):6385-97 [PMID: 25114142]
  78. Biofouling. 2020 Jan;36(1):86-100 [PMID: 31985269]
  79. BMC Infect Dis. 2021 Jun 21;21(1):589 [PMID: 34154550]
  80. Front Microbiol. 2021 Jun 29;12:687625 [PMID: 34349741]
  81. Front Microbiol. 2022 Mar 03;13:846167 [PMID: 35308345]
  82. N Engl J Med. 1998 Dec 31;339(27):2025-6; author reply 2026-7 [PMID: 9882207]
  83. Bioinformatics. 2014 Jul 15;30(14):2068-9 [PMID: 24642063]
  84. Perit Dial Int. 2010 Nov-Dec;30(6):652-6 [PMID: 21148059]
  85. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  86. Diagn Microbiol Infect Dis. 2012 Oct;74(2):101-5 [PMID: 22770653]
  87. Curr Pain Headache Rep. 2022 Dec;26(12):877-882 [PMID: 36454429]
  88. Mol Biol Evol. 2017 Aug 1;34(8):2115-2122 [PMID: 28460117]
  89. Microbiol Spectr. 2021 Sep 3;9(1):e0055021 [PMID: 34406812]
  90. Int J Mol Sci. 2023 Mar 09;24(6): [PMID: 36982293]
  91. Antibiotics (Basel). 2023 Mar 11;12(3): [PMID: 36978425]

Word Cloud

Created with Highcharts 10.0.0infectionsbiofilmisolatesoxacillinSCSvancomycinspinalcordstimulationdevicesformationantibioticstudyantimicrobialactivityrifampinteicoplaninindividualscommonlytreatmentsmatrixcompositionsusceptibilitybiofilm-growingWGSgeneticdiversityisolatevirulencegenesbiofilm-relatedcharacteristicsbiofilmstolerancecausedeffectivemanageusedstrategiesdevice-relatedpredominantcauseBiofilmcomplicatesrequiringsurgicalexploredplanktonicSCS-relatedWhole-genomesequencingexaminedgenotypesvirulomeresistomepan-genomestructurealsoanalyzedearlysurfaceadhesionhemolyticantibiotic-susceptibilitytestingrevealedamongOnethoughsusceptiblecontainedgenemediannumberfactorper58harboredA/DassessingphenotypicstrainsdemonstratedabilityformprofileindicatedshowedhighestefficacyConverselyhighobservedtrimethoprim/sulfamethoxazolelevofloxacinfindingssuggesthighlyvirulentproducerobustcasessuspectedprimarychoiceduelowInsteadappearoptionsIMPORTANCESCSincreasinglychronicpainassociatedparticularlypresentsignificantclinicalchallengesoftencomplicatedprotectsbacteriaimmuneresponsesmakingdifficulteradicateUnderstandingcriticalimprovingtreatmenthighlightsneedreconsiderantibioticslikeshowsreducedcellsIdentifyingalternativesprovidesvaluableinsightcliniciansmanagingpatientsimplantsresearchcontributesgrowingevidencecrucialtreatingemphasizingimportancetailoringphenotypeBiofilm-mediatedStaphylococcusaureus

Similar Articles

Cited By