Global transcriptional response of Pseudomonas aeruginosa to UVA radiation.

Martiniano M Ricardi, Paula M Tribelli, Cristina S Costa, Magdalena Pezzoni
Author Information
  1. Martiniano M Ricardi: IFIByNE (CONICET), Departamento de Fisiolog��a y Biolog��a Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
  2. Paula M Tribelli: IQUIBICEN (CONICET), Departamento de Qu��mica Biol��gica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
  3. Cristina S Costa: Departamento de Radiobiolog��a, Comisi��n Nacional de Energ��a At��mica, Av. Gral. Paz 1499B1650KNA, General San Mart��n, Prov. de Buenos Aires, Argentina.
  4. Magdalena Pezzoni: Departamento de Radiobiolog��a, Comisi��n Nacional de Energ��a At��mica, Av. Gral. Paz 1499B1650KNA, General San Mart��n, Prov. de Buenos Aires, Argentina. pezzoni@cnea.gov.ar. ORCID

Abstract

Ultraviolet A (UVA) radiation is the major fraction of UV radiation reaching the Earth's surface. Its harmful effects on microorganisms, due mainly to oxidative damage, have been exploited for development of natural solar and commercial UVA-based disinfection methods. In this work, the global transcriptional response of Pseudomonas aeruginosa exposed to ultraviolet A (UVA) radiation was analyzed. To conduct this study, we analyzed the whole transcriptome of the PAO1 strain grown to logarithmic phase under sublethal doses of UVA or in the dark. We found that a total of 298 genes responded to UVA with a change of at least two-fold (5.36% of the total P. aeruginosa genome), and showed equal amount of induced and repressed genes. An important fraction of the induced genes were involved in the response to DNA damage and included induction of SOS, prophage and pyocins genes. The results presented in this study suggest that one of the main UVA targets are proteins carrying [Fe-S] clusters since several genes involved in the processes of synthesis, trafficking and assembly of these structures were upregulated. The management of intracellular iron levels also seems to be a robust response to this stress factor. The strong induction of genes involved in denitrification suggest that this pathway and/or reactive nitrogen species such as nitric oxide could have a role in the response to this radiation. Regarding the down-regulated genes, we found many involved in the biosynthesis of PQS, a quorum-sensing signal molecule with a possible role as endogenous photosensitizer.

Keywords

References

  1. Webb, R. B. (1977). Lethal and mutagenic effects of near-ultraviolet radiation. In K. C. Smith (Ed.), Photochemistry and photobiology reviews (pp. 169���261). Plenum Press. [DOI: 10.1007/978-1-4684-2577-2_4]
  2. Sassoubre, L. M., Yamahara, K. M., & Boehm, A. B. (2015). Temporal stability of the microbial community in sewage-polluted seawater exposed to natural sunlight cycles and marine microbiota. Applied and Environmental Microbiology, 81(6), 2107���2116. https://doi.org/10.1128/AEM.03950-14 [DOI: 10.1128/AEM.03950-14]
  3. Wegelin, M., Canonica, S., Mechsner, K., Fleischmann, T., Pesaro, F., & Metzler, A. (1994). Solar water disinfection: Scope of the process and analysis of radiation experiments. Journal of Water Supply: Research and Technology- AQUA, 43, 154���169.
  4. Blanco-Galvez, J., Fern��ndez-Ib����ez, P., & Malato-Rodr��guez, S. (2007). Solar photocatalytic detoxification and disinfection of water: recent overview. Journal of Solar Energy Engineering, 129(1), 4���15. https://doi.org/10.1115/1.2390948 [DOI: 10.1115/1.2390948]
  5. Gamage, J., & Zhang, Z. (2010). Applications of photocatalytic disinfection. International Journal of Photoenergy. https://doi.org/10.1155/2010/764870 [DOI: 10.1155/2010/764870]
  6. Rezaie, A., Leite, G. G. S., Melmed, G. Y., Mathur, R., Villanueva-Millan, M. J., Parodi, G., Sin, J., Germano, J. F., Morales, W., Weitsman, S., Kim, S. Y., Park, J. H., Sakhaie, S., & Pimentel, M. (2020). Ultraviolet A light effectively reduces bacteria and viruses including coronavirus. PLoS ONE, 15(7), e0236199. https://doi.org/10.1371/journal.pone.0236199 . Erratum in: PLoS One (2020), 15(8), e0237782. [DOI: 10.1371/journal.pone.0236199]
  7. Yiyu, O., & Petersen, P. M. (2021). Application of ultraviolet light sources for in vivo disinfection. Japanese Journal of Applied Physics, 60(10), 100501. https://doi.org/10.35848/1347-4065/ac1f47 [DOI: 10.35848/1347-4065/ac1f47]
  8. Chamberlain, J., & Moss, S. H. (1987). Lipid peroxidation and other membrane damage produced in Escherichia coli K1060 by near-UV radiation and deuterium oxide. Photochemistry and Photobiology, 45(5), 625���630. https://doi.org/10.1111/j.1751-1097.1987.tb07389.x [DOI: 10.1111/j.1751-1097.1987.tb07389.x]
  9. Hu, M. L., & Tappel, A. L. (1992). Potentiation of oxidative damage to proteins by ultraviolet-A and protection by antioxidants. Photochemistry and Photobiology, 56(3), 357���363. https://doi.org/10.1111/j.1751-1097.1992.tb02171.x [DOI: 10.1111/j.1751-1097.1992.tb02171.x]
  10. Bosshard, F., Riedel, K., Schneider, T., Geiser, C., Bucheli, M., & Egli, T. (2010). Protein oxidation and aggregation in UVA-irradiated Escherichia coli cells as signs of accelerated cellular senescence. Environmental Microbiology, 12(11), 2931���2945. https://doi.org/10.1111/j.1462-2920.2010.02268.x [DOI: 10.1111/j.1462-2920.2010.02268.x]
  11. Girard, P. M., Francesconi, S., Pozzebon, M., Graindorge, D., & Sage, E. (2011). UVA-induced damage to DNA and proteins: Direct versus indirect photochemical processes. Journal of Physics Conference Series, 261, 012002. https://doi.org/10.1088/1742-6596/261/1/012002 [DOI: 10.1088/1742-6596/261/1/012002]
  12. Ba��mler, W., Regensburger, J., Knak, A., Felgentr��ger, A., & Maisch, T. (2012). UVA and endogenous photosensitizers-the detection of singlet oxygen by its luminescence. Photochemical & Photobiological Sciences, 11, 107���117. https://doi.org/10.1039/C1PP05142C [DOI: 10.1039/C1PP05142C]
  13. Pezzoni, M., Meichtry, M., Pizarro, R. A., & Costa, C. S. (2015). Role of the Pseudomonas quinolone signal (PQS) in sensitizing Pseudomonas aeruginosa to UVA radiation. Journal of Photochemistry and Photobiology B: Biology, 142, 129���140. https://doi.org/10.1016/j.jphotobiol.2014.11.014 [DOI: 10.1016/j.jphotobiol.2014.11.014]
  14. Ramabhadran, T. V., & Jagger, J. (1976). Mechanism of growth delay induced in Escherichia coli by near ultraviolet radiation. Proceedings of the Natural Academy of Sciences of the United States of America, 73(1), 59���63. https://doi.org/10.1073/pnas.73.1.59 [DOI: 10.1073/pnas.73.1.59]
  15. Caldeira de Araujo, A., & Favre, A. (1986). Near ultraviolet DNA damage induce the SOS response in Escherichia coli. EMBO Journal, 5(1), 1795���1799. https://doi.org/10.1002/j.1460-2075.1986.tb04193.x [DOI: 10.1002/j.1460-2075.1986.tb04193.x]
  16. Pizarro, R. A. (1995). UVA oxidative damage modified by environmental conditions in Escherichia coli. International Journal of Radiation Biology, 68(3), 293���299. https://doi.org/10.1080/09553009514551221 [DOI: 10.1080/09553009514551221]
  17. Blondel, M. O., & Favre, A. (1988). tRNAPhe and tRNAPro are the near-ultraviolet molecular targets triggering the growth delay effect. Biochemical and Biophysical Research Communications, 150(3), 979���986. https://doi.org/10.1016/0006-291x(88)90725-5 [DOI: 10.1016/0006-291x(88)90725-5]
  18. Favre, A., Hajnsdorf, E., Thiam, K., & Caldeira de Araujo, A. (1985). Mutagenesis and growth delay induced in Escherichia coli by near-ultraviolet radiations. Biochimie, 67(3���4), 335���342. https://doi.org/10.1016/s0300-9084(85)80076-6 [DOI: 10.1016/s0300-9084(85)80076-6]
  19. Irving, S. E., Choudhury, N. R., & Corrigan, R. M. (2021). The stringent response and physiological roles of (pp)pGpp in bacteria. Nature Reviews Microbiology, 19(4), 256���271. https://doi.org/10.1038/s41579-020-00470-y [DOI: 10.1038/s41579-020-00470-y]
  20. Qiu, X., Sundin, G. W., Wu, L., Zhou, J., & Tiedje, J. M. (2005). Comparative analysis of differentially expressed genes in Shewanella oneidensis MR-1 following exposure to UVC, UVB, and UVA radiation. Journal of Bacteriology, 187(10), 3556���3564. https://doi.org/10.1128/JB.187.10.3556-3564.2005 [DOI: 10.1128/JB.187.10.3556-3564.2005]
  21. Berney, M., Weilenmann, H. U., & Egli, T. (2006). Gene expression of Escherichia coli in continuous culture during adaptation to artificial sunlight. Environmental Microbiology, 8(9), 1635���1647. https://doi.org/10.1111/j.1462-2920.2006.01057.x [DOI: 10.1111/j.1462-2920.2006.01057.x]
  22. Soule, T., Gao, Q., Stout, V., & Garcia-Pichel, F. (2013). The global response of Nostoc punctiforme ATCC 29133 to UVA stress, assessed in a temporal DNA microarray study. Photochemistry and Photobiology, 89(2), 415���423. https://doi.org/10.1111/php.12014 [DOI: 10.1111/php.12014]
  23. Sassoubre, L. M., Ramsey, M. M., Gilmore, M. S., & Boehm, A. B. (2014). Transcriptional response of Enterococcus faecalis to sunlight. Journal of Photochemistry and Photobiology B: Biology, 130, 349���356. https://doi.org/10.1016/j.jphotobiol.2013.12.013 [DOI: 10.1016/j.jphotobiol.2013.12.013]
  24. McClary, J. S., & Boehm, A. B. (2018). Transcriptional response of Staphylococcus aureus to sunlight in oxic and anoxic conditions. Frontiers in Microbiology, 9, 249. https://doi.org/10.3389/fmicb.2018.00249 [DOI: 10.3389/fmicb.2018.00249]
  25. Fern��ndez, R. O., & Pizarro, R. A. (1996). Lethal effect induced in Pseudomonas aeruginosa exposed to ultraviolet-A radiation. Photochemistry and Photobiology, 64(2), 334���339. https://doi.org/10.1111/j.1751-1097.1996.tb02467.x [DOI: 10.1111/j.1751-1097.1996.tb02467.x]
  26. Lin, J., Cheng, J., Wang, Y., & Shen, X. (2018). The Pseudomonas Quinolone Signal (PQS): Not just for quorum sensing anymore. Frontiers in Cellular and Infection Microbiology, 8, 230. https://doi.org/10.3389/fcimb.2018.00230 [DOI: 10.3389/fcimb.2018.00230]
  27. Pezzoni, M., Pizarro, R. A., & Costa, C. S. (2012). Protective effect of low UVA irradiation against the action of lethal UVA on Pseudomonas aeruginosa: Role of the relA gene. Journal of Photochemistry and Photobiology B: Biology, 116, 95���104. https://doi.org/10.1016/j.jphotobiol.2012.08.011 [DOI: 10.1016/j.jphotobiol.2012.08.011]
  28. Pezzoni, M., Tribelli, P. M., Pizarro, R. A., L��pez, N. A., & Costa, C. S. (2016). Exposure to low UVA doses increases KatA and KatB catalase activities, and confers cross-protection against subsequent oxidative injuries in Pseudomonas aeruginosa. Microbiology, 162(5), 855���864. https://doi.org/10.1099/mic.0.000268 [DOI: 10.1099/mic.0.000268]
  29. Pezzoni, M., Pizarro, R. A., & Costa, C. S. (2018). Exposure to low doses of UVA increases biofilm formation in Pseudomonas aeruginosa. Biofouling, 34(6), 673���684. https://doi.org/10.1080/08927014.2018.1480758 [DOI: 10.1080/08927014.2018.1480758]
  30. Pezzoni, M., Pizarro, R. A., & Costa, C. S. (2020). Role of quorum sensing in UVA-induced biofilm formation in Pseudomonas aeruginosa. Microbiology, 166(8), 735���750. https://doi.org/10.1099/mic.0.000932 [DOI: 10.1099/mic.0.000932]
  31. Grossich, R., Lemos Vilches, M., Costa, C. S., & Pezzoni, M. (2023). Role of Pel and Psl polysaccharides in the response of Pseudomonas aeruginosa to environmental challenges: Oxidative stress agents (UVA, HO, sodium hypochlorite) and its competitor Staphylococcus aureus. Microbiology, 169(2), 001301. https://doi.org/10.1099/mic.0.001301 [DOI: 10.1099/mic.0.001301]
  32. Pezzoni, M., De Troch, M., Pizarro, R. A., & Costa, C. S. (2022). Homeophasic adaptation in response to UVA radiation in Pseudomonas aeruginosa: Changes of membrane fatty acid composition and induction of desA and desB expression. Photochemistry and Photobiology, 98(4), 886���893. https://doi.org/10.1111/php.13548 [DOI: 10.1111/php.13548]
  33. Pezzoni, M., Lemos, M., Pizarro, R. A., & Costa, C. S. (2022). UVA as environmental signal for alginate production in Pseudomonas aeruginosa: Role of this polysaccharide in the protection of planktonic cells and biofilms against lethal UVA doses. Photochemistry & Photobiological Sciences, 21(8), 1459���1472. https://doi.org/10.1007/s43630-022-00236-w [DOI: 10.1007/s43630-022-00236-w]
  34. Holloway, B. W. (1955). Genetic recombination in Pseudomonas aeruginosa. Journal of General Microbiology, 13(3), 572���581. https://doi.org/10.1099/00221287-13-3-572 [DOI: 10.1099/00221287-13-3-572]
  35. Zhu, X., Oh, H. S., Ng, Y. C. B., Tang, P. Y. P., Barraud, N., & Rice, S. A. (2018). Nitric oxide-mediated induction of dispersal in Pseudomonas aeruginosa biofilms is inhibited by flavohemoglobin production and is enhanced by imidazole. Antimicrobial Agents and Chemotherapy, 62(3), e01832-17. https://doi.org/10.1128/AAC.01832-17 [DOI: 10.1128/AAC.01832-17]
  36. Hoerter, J. D., Arnold, A. A., Kuczynska, D. A., Shibuya, A., Ward, C. S., Sauer, M. G., Gizachew, A., Hotchkiss, T. M., Fleming, T. J., & Johnson, S. (2005). Effects of sublethal UVA irradiation on activity levels of oxidative defense enzymes and protein oxidation in Escherichia coli. Journal of Photochemistry and Photobiology B: Biology, 81(3), 171���180. https://doi.org/10.1016/j.jphotobiol.2005.07.005 [DOI: 10.1016/j.jphotobiol.2005.07.005]
  37. Cadenas, E., Ginsberg, M., Rabe, U., & Sies, H. (1984). Evaluation of alpha-tocopherol antioxidant activity in microsomal lipid peroxidation as detected by low-level chemiluminescence. Biochemical Journal, 223(3), 755���759. https://doi.org/10.1042/bj2230755 [DOI: 10.1042/bj2230755]
  38. Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114���2120. https://doi.org/10.1093/bioinformatics/btu170 [DOI: 10.1093/bioinformatics/btu170]
  39. McClure, R., Balasubramanian, D., Sun, Y., Bobrovsky, M., Sumby, P., Genco, C., Vanderpool, C. K., & Tjadenet, B. (2013). Computational analysis of bacterial RNA-Seq data. Nucleic Acids Research, 41(14), e140. https://doi.org/10.1093/nar/gkt444 [DOI: 10.1093/nar/gkt444]
  40. Larionov, A., Krause, A., & Miller, W. (2005). A standard curve based method for relative real time PCR data processing. BMC Bioinformatics, 6, 62. https://doi.org/10.1186/1471-2105-6-62 [DOI: 10.1186/1471-2105-6-62]
  41. Galindo, F., Kabir, N., Gavrilovic, J., & Russell, D. A. (2008). Spectroscopic studies of 1,2-diaminoanthraquinone (DAQ) as a fluorescent probe for the imaging of nitric oxide in living cells. Photochemical & Photobiological Sciences, 7(1), 126���130. https://doi.org/10.1039/b707528f [DOI: 10.1039/b707528f]
  42. Gerhard, P., Murray, R. N., Costilow, N., Nester, W., Wood, N., Krieg, N. R., & Phillips, G. (1981). Manual of methods of general bacteriology. American Society for Microbiology.
  43. Tilbury, R. N., & Quickenden, T. L. (1988). Spectral and time dependence studies of the ultraweak bioluminiscence emitted by the bacterium Escherichia coli. Photochemistry and Photobiology, 47(1), 145���150. https://doi.org/10.1111/j.1751-1097.1988.tb02704.x [DOI: 10.1111/j.1751-1097.1988.tb02704.x]
  44. Winsor, G. L., Griffiths, E. J., Lo, R., Dhillon, B. K., Shay, J. A., & Brinkman, F. S. (2016). Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Research, 44(D1), D646���D653. https://doi.org/10.1093/nar/gkv1227 [DOI: 10.1093/nar/gkv1227]
  45. Chou, H. T., Li, J. Y., & Lu, C. D. (2014). Functional characterization of the agtABCD and agtSR operons for 4-aminobutyrate and 5-aminovalerate uptake and regulation in Pseudomonas aeruginosa PAO1. Current Microbiology, 68(1), 59���63. https://doi.org/10.1007/s00284-013-0446-y [DOI: 10.1007/s00284-013-0446-y]
  46. Alwash, M. S., Aqma, W. S., Ahmad, W. Y., & Ibrahim, N. (2020). Transcriptomic response in Pseudomonas aeruginosa towards treatment with a kaempferol isolated from Melastoma malabathricum linn leaves. International Journal of Microbiology, 2020, 6915483. https://doi.org/10.1155/2020/6915483 [DOI: 10.1155/2020/6915483]
  47. Small, D. A., Chang, W., Toghrol, F., & Bentley, W. E. (2007). Comparative global transcription analysis of sodium hypochlorite, peracetic acid, and hydrogen peroxide on Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 76(5), 1093���1105. https://doi.org/10.1007/s00253-007-1072-z [DOI: 10.1007/s00253-007-1072-z]
  48. Quintana, J., Novoa-Aponte, L., & Arg��ello, J. M. (2017). Copper homeostasis networks in the bacterium Pseudomonas aeruginosa. Journal of Biological Chemistry, 292(38), 15691���15704. https://doi.org/10.1074/jbc.M117.804492 [DOI: 10.1074/jbc.M117.804492]
  49. Filloux, A. (2011). Protein secretion systems in Pseudomonas aeruginosa: An essay on diversity, evolution, and function. Frontiers in Microbiology, 2, 155. https://doi.org/10.3389/fmicb.2011.00155 [DOI: 10.3389/fmicb.2011.00155]
  50. Galimand, M., Gamper, M., Zimmermann, A., & Haas, D. (1991). Positive FNR-like control of anaerobic arginine degradation and nitrate respiration in Pseudomonas aeruginosa. Journal of Bacteriology, 173(5), 1598���1606. https://doi.org/10.1128/jb.173.5.1598-1606.1991 [DOI: 10.1128/jb.173.5.1598-1606.1991]
  51. Trunk, K., Benkert, B., Qu��ck, N., M��nch, R., Scheer, M., Garbe, J., J��nsch, L., Trost, M., Wehland, J., Buer, J., Jahn, M., Schobert, M., & Jahn, D. (2010). Anaerobic adaptation in Pseudomonas aeruginosa: Definition of the Anr and Dnr regulons. Environmental Microbiology, 12(6), 1719���1733. https://doi.org/10.1111/j.1462-2920.2010.02252.x [DOI: 10.1111/j.1462-2920.2010.02252.x]
  52. Arai, H. (2011). Regulation and function of versatile aerobic and anaerobic respiratory metabolism in Pseudomonas aeruginosa. Frontiers in Microbiology, 2, 103. https://doi.org/10.3389/fmicb.2011.00103 [DOI: 10.3389/fmicb.2011.00103]
  53. Schreiber, K., Krieger, R., Benkert, B., Eschbach, M., Arai, H., Schobert, M., & Jahn, D. (2007). The anaerobic regulatory network required for Pseudomonas aeruginosa nitrate respiration. Journal of Bacteriology, 189(11), 4310���4314. https://doi.org/10.1128/JB.00240-07 [DOI: 10.1128/JB.00240-07]
  54. Cianciulli Sesso, A., Lili��, F., Amman, B., Wolfinger, M. T., Sonnleitner, E., & Bl��si, U. (2021). Gene expression profiling of Pseudomonas aeruginosa upon exposure to colistin and tobramycin. Frontiers in Microbiology, 12, 626715. https://doi.org/10.3389/fmicb.2021.626715 [DOI: 10.3389/fmicb.2021.626715]
  55. Filiatrault, M., Wagner, V., Bushnell, D., Haidaris, C., Iglewski, B., & Passador, L. (2005). Effect of anaerobiosis and nitrate on gene expression in Pseudomonas aeruginosa. Infection and Immunity, 73(6), 3764���3772. https://doi.org/10.1128/IAI.73.6.3764-3772.2005 [DOI: 10.1128/IAI.73.6.3764-3772.2005]
  56. Bowman, L. A., McLean, S., Poole, R. K., & Fukuto, J. M. (2011). The diversity of microbial responses to nitric oxide and agents of nitrosative stress close cousins but not identical twins. Advances in Microbial Physiology, 59, 135���219. https://doi.org/10.1016/B978-0-12-387661-4.00006-9 [DOI: 10.1016/B978-0-12-387661-4.00006-9]
  57. Arai, H., Hayashi, M., Kuroi, A., Ishii, M., & Igarashi, Y. (2005). Transcriptional regulation of the flavohemoglobin gene for aerobic nitric oxide detoxification by the second nitric oxide-responsive regulator of Pseudomonas aeruginosa. Journal of Bacteriology, 187(12), 3960���3968. https://doi.org/10.1128/JB.187.12.3960-3968.2005 [DOI: 10.1128/JB.187.12.3960-3968.2005]
  58. Koskenkorva-Frank, T. S., & Kallio, P. T. (2009). Induction of Pseudomonas aeruginosa fhp and fhpR by reactive oxygen species. Canadian Journal of Microbiology, 55(6), 657���663. https://doi.org/10.1139/w09-024 [DOI: 10.1139/w09-024]
  59. Hazell, G., Khazova, M., Cohen, H., Felton, S., & Raj, K. (2022). Post-exposure persistence of nitric oxide upregulation in skin cells irradiated by UV-A. Scientific Reports, 12(1), 9465. https://doi.org/10.1038/s41598-022-13399-4 [DOI: 10.1038/s41598-022-13399-4]
  60. Wang, Y., Yin, R., Tang, Z., Liu, W., He, C., & Xia, D. (2022). Reactive nitrogen species mediated inactivation of pathogenic microorganisms during UVA photolysis of nitrite at surface water levels. Environmental Science & Technology, 56(17), 12542���12552. https://doi.org/10.1021/acs.est.2c01136 [DOI: 10.1021/acs.est.2c01136]
  61. National Research Council (US) Subcommittee on Nitrate and Nitrite in Drinking Water. (1995). Nitrate and nitrite in drinking water. National Academies Press.
  62. Patel, B. A., Moreau, M., Widom, J., Chen, H., Yin, L., Hua, Y., & Crane, B. R. (2009). Endogenous nitric oxide regulates the recovery of the radiation-resistant bacterium Deinococcus radiodurans from exposure to UV light. Proceedings of the Natural Academy of Sciences of the United States of America, 106(43), 18183���18188. https://doi.org/10.1073/pnas.0907262106 [DOI: 10.1073/pnas.0907262106]
  63. Gusarov, I., & Nudler, E. (2005). NO-mediated cytoprotection: Instant adaptation to oxidative stress in bacteria. Proceedings of the Natural Academy of Sciences of the United States of America, 102(39), 13855���13860. https://doi.org/10.1073/pnas.0504307102 [DOI: 10.1073/pnas.0504307102]
  64. Brezonik, P., Brezonik, L., & Fulkerson-Brekken, J. (1998). Nitrate-induced photolysis in natural waters: Controls on concentrations of hydroxyl radical photo-intermediates by natural scavenging agents. Environmental Science & Technology, 32(19), 3004���3010. https://doi.org/10.1021/es9802908 [DOI: 10.1021/es9802908]
  65. Clay, M. E., Hammond, J. H., Zhong, F., Chen, X., Kowalski, C. H., Lee, A. J., Porter, M. S., Hampton, T. H., Greene, C. S., Pletneva, E. V., & Hogan, D. A. (2020). Pseudomonas aeruginosa lasR mutant fitness in microoxia is supported by an Anr-regulated oxygen-binding hemerythrin. Proceedings of the Natural Academy of Sciences of the United States of America, 117(6), 3167���3173. https://doi.org/10.1073/pnas.1917576117 [DOI: 10.1073/pnas.1917576117]
  66. Crocker, A. W., Harty, C. E., Hammond, J. H., Willger, S. D., Salazar, P., Botelho, N. J., Jacobs, N. J., & Hogan, D. A. (2019). Pseudomonas aeruginosa ethanol oxidation by AdhA in low-oxygen environments. Journal of Bacteriology, 201(23), e00393-19. https://doi.org/10.1128/JB.00393-19 [DOI: 10.1128/JB.00393-19]
  67. Pessi, G., & Haas, D. (2000). Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum-sensing regulators LasR and RhlR in Pseudomonas aeruginosa. Journal of Bacteriology, 182(24), 6940���6949. https://doi.org/10.1128/JB.182.24.6940-6949.2000 [DOI: 10.1128/JB.182.24.6940-6949.2000]
  68. Gamper, M., Zimmermann, A., & Haas, D. (1991). Anaerobic regulation of transcription initiation in the arcDABC operon of Pseudomonas aeruginosa. Journal of Bacteriology, 173(15), 4742���4750. https://doi.org/10.1128/jb.173.15.4742-4750.1991 [DOI: 10.1128/jb.173.15.4742-4750.1991]
  69. Comolli, J. C., & Donohue, T. J. (2004). Differences in two Pseudomonas aeruginosa cbb3 cytochrome oxidases. Molecular Microbiology, 51(4), 1193���1203. https://doi.org/10.1046/j.1365-2958.2003.03904.x [DOI: 10.1046/j.1365-2958.2003.03904.x]
  70. Cirz, R. T., O���Neill, B. M., Hammond, J. A., Head, S. R., & Romesberg, F. E. (2006). Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin. Journal of Bacteriology, 188(20), 7101���7110. https://doi.org/10.1128/JB.00807-06 [DOI: 10.1128/JB.00807-06]
  71. Long, Y., Fu, W., Wang, S., Deng, X., Jin, Y., Bai, F., Cheng, Z., & Wu, W. (2020). Fis contributes to resistance of Pseudomonas aeruginosa to ciprofloxacin by regulating pyocin synthesis. Journal of Bacteriology, 202(11), e00064-20. https://doi.org/10.1128/JB.00064-20 [DOI: 10.1128/JB.00064-20]
  72. Pe��a, J. M., Prezioso, S. M., McFarland, K. A., Kambara, T. K., Ramsey, K. M., Deighan, P., & Dove, S. L. (2021). Control of a programmed cell death pathway in Pseudomonas aeruginosa by an antiterminator. Nature Communications, 12, 1702. https://doi.org/10.1038/s41467-021-21941-7 [DOI: 10.1038/s41467-021-21941-7]
  73. Rahman, S., Bose, B., & Chatterjee, S. N. (1995). On the induction of protective responses in Salmonella typhimurium strain TA1535/pSK1002 by UVA (365 nm). Photochemistry and Photobiology, 61(5), 471���478. https://doi.org/10.1111/j.1751-1097.1995.tb02347.x [DOI: 10.1111/j.1751-1097.1995.tb02347.x]
  74. Kidambi, S. P., Booth, M. G., Kokjohn, T. A., & Miller, R. V. (1996). recA-dependence of the response of Pseudomonas aeruginosa to UVA and UVB irradiation. Microbiology, 142(Pt 4), 1033���1040. https://doi.org/10.1099/00221287-142-4-1033 [DOI: 10.1099/00221287-142-4-1033]
  75. Zhao, K., Li, Y., Yue, B., & Wu, M. (2014). Genes as early responders regulate quorum-sensing and control bacterial cooperation in Pseudomonas aeruginosa. PLoS ONE, 9, e101887. https://doi.org/10.1371/journal.pone.0101887 [DOI: 10.1371/journal.pone.0101887]
  76. Liu, P., Yue, C., Liu, L., Gao, C., Lyu, Y., Deng, S., Tian, H., & Jia, X. (2022). The function of small RNA in Pseudomonas aeruginosa. PeerJ, 10, e13738. https://doi.org/10.7717/peerj.13738 [DOI: 10.7717/peerj.13738]
  77. Esquilin-Lebron, K., Dubrac, S., Barras, F., & Boyd, J. M. (2021). Bacterial approaches for assembling iron-sulfur proteins. mBio, 12, e0242521. https://doi.org/10.1128/mBio.02425-21 [DOI: 10.1128/mBio.02425-21]
  78. Panasia, G., Oetermann, S., Steinb��chel, A., & Philipp, B. (2019). Sulfate ester detergent degradation in Pseudomonas aeruginosa is subject to both positive and negative regulation. Applied and Environmental Microbiology, 85(13), e01352-19. https://doi.org/10.1128/AEM.01352-19 [DOI: 10.1128/AEM.01352-19]
  79. Imlay, J. A. (2006). Iron-sulphur clusters and the problem with oxygen. Molecular Microbiology, 59(4), 1073���1082. https://doi.org/10.1111/j.1365-2958.2006.05028.x [DOI: 10.1111/j.1365-2958.2006.05028.x]
  80. Yao, H., Soldano, A., Fontenot, L., Donnarumma, F., Lovell, S., Chandler, J. R., & Rivera, M. (2022). Pseudomonas aeruginosa bacterioferritin is assembled from FtnA and BfrB Subunits with the relative proportions dependent on the environmental oxygen availability. Biomolecules, 12(3), 366. https://doi.org/10.3390/biom12030366 [DOI: 10.3390/biom12030366]
  81. Attila, C., Ueda, A., & Wood, T. K. (2008). PA2663 (PpyR) increases biofilm formation in Pseudomonas aeruginosa PAO1 through the psl operon and stimulates virulence and quorum-sensing phenotypes. Applied Microbiology and Biotechnology, 78(2), 293���307. https://doi.org/10.1007/s00253-007-1308-y [DOI: 10.1007/s00253-007-1308-y]
  82. Bonneau, A., Roche, B., & Schalk, I. J. (2020). Iron acquisition in Pseudomonas aeruginosa by the siderophore pyoverdine: An intricate interacting network including periplasmic and membrane proteins. Scientific Reports, 10(1), 120. https://doi.org/10.1038/s41598-019-56913-x [DOI: 10.1038/s41598-019-56913-x]
  83. Alvarez-Ortega, C., & Harwood, C. S. (2007). Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Molecular Microbiology, 65(1), 153���165. https://doi.org/10.1111/j.1365-2958.2007.05772.x [DOI: 10.1111/j.1365-2958.2007.05772.x]
  84. Kaihami, G. H., Almeida, J. R., Santos, S. S., Netto, L. E., Almeida, S. R., & Baldini, R. L. (2014). Involvement of a 1-Cys peroxiredoxin in bacterial virulence. PLoS Pathogens, 10(10), e1004442. https://doi.org/10.1371/journal.ppat.1004442 [DOI: 10.1371/journal.ppat.1004442]
  85. Somprasong, N., Jittawuttipoka, T., Duang-Nkern, J., Romsang, A., Chaiyen, P., Schweizer, H. P., Vattanaviboon, P., & Mongkolsuk, S. (2012). Pseudomonas aeruginosa thiol peroxidase protects against hydrogen peroxide toxicity and displays atypical patterns of gene regulation. Journal of Bacteriology, 194(15), 3904���3912. https://doi.org/10.1128/JB.00347-12 [DOI: 10.1128/JB.00347-12]
  86. Boes, N., Schreiber, K., & Schobert, M. (2008). SpoT-triggered stringent response controls usp gene expression in Pseudomonas aeruginosa. Journal of Bacteriology, 190(21), 7189���7199. https://doi.org/10.1128/JB.00600-08 [DOI: 10.1128/JB.00600-08]
  87. Chen, W., Wang, B., Gruber, J. D., Zhang, Y. M., & Davies, C. (2018). Acyl carrier potein 3 is involved in oxidative stress response in Pseudomonas aeruginosa. Frontiers in Microbiology, 9, 2244. https://doi.org/10.3389/fmicb.2018.02244 [DOI: 10.3389/fmicb.2018.02244]
  88. Baysse, C., & O���Gara, F. (2007). Role of membrane structure during stress signalling and adaptation in Pseudomonas. In J. L. Ramos & A. Filloux (Eds.), Pseudomonas (pp. 193���224). Springer. [DOI: 10.1007/978-1-4020-6097-7_7]
  89. Zhu, K., Choi, K. H., Schweizer, H. P., Rock, C. O., & Zhang, Y. M. (2006). Two aerobic pathways for the formation of unsaturated fatty acids in Pseudomonas aeruginosa. Molecular Microbiology, 60(2), 260���273. https://doi.org/10.1111/j.1365-2958.2006.05088.x [DOI: 10.1111/j.1365-2958.2006.05088.x]
  90. H��ussler, S., & Becker, T. (2008). The Pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations. PLoS Pathogens, 4(9), e1000166. https://doi.org/10.1371/journal.ppat.1000166 [DOI: 10.1371/journal.ppat.1000166]
  91. Rompf, A., Hungerer, C., Hoffmann, T., Lindenmeyer, M., R��mling, U., Gross, U., Doss, M. O., Arai, H., Igarashi, Y., & Jahn, D. (1998). Regulation of Pseudomonas aeruginosa hemF and hemN by the dual action of the redox response regulators Anr and Dnr. Molecular Microbiology, 29(4), 985���997. https://doi.org/10.1046/j.1365-2958.1998.00980.x [DOI: 10.1046/j.1365-2958.1998.00980.x]
  92. McManus, H. R., & Dove, S. L. (2011). The CgrA and CgrC proteins form a complex that positively regulates cupA fimbrial gene expression in Pseudomonas aeruginosa. Journal of Bacteriology, 193(22), 6152���6161. https://doi.org/10.1128/JB.05904-11 [DOI: 10.1128/JB.05904-11]
  93. Campisano, A., Schroeder, C., Schemionek, M., Overhage, J., & Rehm, B. H. (2006). PslD is a secreted protein required for biofilm formation by Pseudomonas aeruginosa. Applied and Environmental Microbiology, 72(4), 3066���3068. https://doi.org/10.1128/AEM.72.4.3066-3068.2006 [DOI: 10.1128/AEM.72.4.3066-3068.2006]
  94. Yang, F., Zhou, Y., Bai, Y., Pan, X., Ha, U. H., Cheng, Z., Wu, W., Jin, Y., & Bai, F. (2023). MvfR controls tolerance to polymyxin B by regulating rfaD in Pseudomonas aeruginosa. Microbiology Spectrum, 11(3), e0042623. https://doi.org/10.1128/spectrum.00426-23 [DOI: 10.1128/spectrum.00426-23]

Grants

  1. PICT 2017-0598/Agencia Nacional de Promoci��n de la Investigaci��n, el Desarrollo Tecnol��gico y la Innovaci��n
  2. PIP 11220200100710/Consejo Nacional de Investigaciones Cient��ficas y T��cnicas

MeSH Term

Pseudomonas aeruginosa
Ultraviolet Rays
Transcription, Genetic
Gene Expression Regulation, Bacterial
DNA Damage
Transcriptome

Word Cloud

Created with Highcharts 10.0.0UVAgenesradiationresponseaeruginosainvolvedPseudomonasUltravioletfractiondamagetranscriptionalanalyzedstudyfoundtotalinducedinductionsuggestrolemajorUVreachingEarth'ssurfaceharmfuleffectsmicroorganismsduemainlyoxidativeexploiteddevelopmentnaturalsolarcommercialUVA-baseddisinfectionmethodsworkglobalexposedultravioletconductwholetranscriptomePAO1straingrownlogarithmicphasesublethaldosesdark298respondedchangeleasttwo-fold536%PgenomeshowedequalamountrepressedimportantDNAincludedSOSprophagepyocinsresultspresentedonemaintargetsproteinscarrying[Fe-S]clusterssinceseveralprocessessynthesistraffickingassemblystructuresupregulatedmanagementintracellularironlevelsalsoseemsrobuststressfactorstrongdenitrificationpathwayand/orreactivenitrogenspeciesnitricoxideRegardingdown-regulatedmanybiosynthesisPQSquorum-sensingsignalmoleculepossibleendogenousphotosensitizerGlobalGeneexpressionRNA-seqTranscriptome

Similar Articles

Cited By

No available data.