Multi-scale asynchronous correlation and 2D convolutional autoencoder for adolescent health risk prediction with limited fMRI data.

Di Gao, Guanghao Yang, Jiarun Shen, Fang Wu, Chao Ji
Author Information
  1. Di Gao: School of Physical Education, China University of Mining & Technology (Beijing), Beijing, China.
  2. Guanghao Yang: School of Physical Education, China University of Mining & Technology (Beijing), Beijing, China.
  3. Jiarun Shen: School of Physical Education, China University of Mining & Technology (Beijing), Beijing, China.
  4. Fang Wu: School of Physical Education, China University of Mining & Technology (Beijing), Beijing, China.
  5. Chao Ji: Physical Education Teaching and Research Section, Beijing City University, Beijing, China.

Abstract

Introduction: Adolescence is a fundamental period of transformation, encompassing extensive physical, psychological, and behavioral changes. Effective health risk assessment during this stage is crucial for timely intervention, yet traditional methodologies often fail to accurately predict mental and behavioral health risks due to the intricacy of neural dynamics and the scarcity of quality-annotated fMRI datasets.
Methods: This study introduces an innovative deep learning-based framework for health risk assessment in adolescents by employing a combination of a two-dimensional convolutional autoencoder (2DCNN-AE) with multi-sequence learning and multi-scale asynchronous correlation information extraction techniques. This approach facilitates the intricate analysis of spatial and temporal features within fMRI data, aiming to enhance the accuracy of the risk assessment process.
Results: Upon examination using the Adolescent Risk Behavior (AHRB) dataset, which includes fMRI scans from 174 individuals aged 17-22, the proposed methodology exhibited a significant improvement over conventional models. It attained a precision of 83.116%, a recall of 84.784%, and an F1-score of 83.942%, surpassing standard benchmarks in most pertinent evaluative measures.
Discussion: The results underscore the superior performance of the deep learning-based approach in understanding and predicting health-related risks in adolescents. It underscores the value of this methodology in advancing the precision of health risk assessments, offering an enhanced tool for early detection and potential intervention strategies in this sensitive developmental stage.

Keywords

References

  1. Front Psychiatry. 2020 Oct 29;11:551299 [PMID: 33192663]
  2. Clin EEG Neurosci. 2023 Mar;54(2):151-159 [PMID: 36052402]
  3. Transl Psychiatry. 2020 Nov 26;10(1):413 [PMID: 33243979]
  4. Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020: [PMID: 34012504]
  5. Prog Neurobiol. 2021 Dec;207:101936 [PMID: 33130229]
  6. J Neural Eng. 2021 Jul 23;18(4): [PMID: 34229310]
  7. Dev Cogn Neurosci. 2023 Oct;63:101291 [PMID: 37672817]
  8. PLoS One. 2010 Jul 06;5(7):e11440 [PMID: 20625430]
  9. Brain Imaging Behav. 2016 Jun;10(2):342-56 [PMID: 26123390]
  10. Annu Rev Clin Psychol. 2015;11:361-77 [PMID: 25581237]
  11. Med Image Anal. 2022 Jul;79:102430 [PMID: 35397470]
  12. Curr Opin Behav Sci. 2021 Aug;40:96-104 [PMID: 33816717]
  13. Comput Med Imaging Graph. 2019 Jan;71:67-78 [PMID: 30508806]
  14. JAMA Netw Open. 2020 Dec 1;3(12):e2027491 [PMID: 33275154]
  15. Proc Natl Acad Sci U S A. 2021 Jul 6;118(27): [PMID: 34193521]
  16. Neuroimage. 2021 May 1;231:117844 [PMID: 33577937]
  17. Front Hum Neurosci. 2019 Feb 01;13:6 [PMID: 30774589]
  18. Nat Neurosci. 2022 Jan;25(1):116-126 [PMID: 34916659]
  19. Neuropsychologia. 2010 Aug;48(10):3037-44 [PMID: 20561537]
  20. Neuroimage. 2017 Feb 15;147:736-745 [PMID: 27865923]
  21. Neuroimage. 2021 May 15;232:117872 [PMID: 33609668]
  22. J Adolesc Health. 2023 Oct 8;: [PMID: 37804305]
  23. J Am Acad Child Adolesc Psychiatry. 2023 Feb;62(2):208-229 [PMID: 35944754]
  24. Front Physiol. 2020 Dec 17;11:583005 [PMID: 33391011]
  25. Mol Psychiatry. 2020 Dec;25(12):3413-3421 [PMID: 31427753]
  26. Braz J Psychiatry. 2021 Mar-Apr;43(2):210-221 [PMID: 32756805]
  27. Neuroimage. 2021 Nov 1;241:118423 [PMID: 34303794]
  28. Transl Psychiatry. 2023 Feb 6;13(1):45 [PMID: 36746929]
  29. Artif Intell Med. 2020 Mar;103:101786 [PMID: 32143793]
  30. BMC Public Health. 2020 Apr 10;20(1):472 [PMID: 32272906]
  31. PLoS One. 2020 Apr 6;15(4):e0230389 [PMID: 32251439]

Word Cloud

Created with Highcharts 10.0.0healthriskassessmentfMRIbehavioralrisksdeepconvolutionalautoencoderstageinterventionlearning-basedadolescentslearningasynchronouscorrelationapproachdatamethodologyprecision83Introduction:AdolescencefundamentalperiodtransformationencompassingextensivephysicalpsychologicalchangesEffectivecrucialtimelyyettraditionalmethodologiesoftenfailaccuratelypredictmentaldueintricacyneuraldynamicsscarcityquality-annotateddatasetsMethods:studyintroducesinnovativeframeworkemployingcombinationtwo-dimensional2DCNN-AEmulti-sequencemulti-scaleinformationextractiontechniquesfacilitatesintricateanalysisspatialtemporalfeatureswithinaimingenhanceaccuracyprocessResults:UponexaminationusingAdolescentRiskBehaviorAHRBdatasetincludesscans174individualsaged17-22proposedexhibitedsignificantimprovementconventionalmodelsattained116%recall84784%F1-score942%surpassingstandardbenchmarkspertinentevaluativemeasuresDiscussion:resultsunderscoresuperiorperformanceunderstandingpredictinghealth-relatedunderscoresvalueadvancingassessmentsofferingenhancedtoolearlydetectionpotentialstrategiessensitivedevelopmentalMulti-scale2Dadolescentpredictionlimitedadolescencefunctionalmagneticresonanceimaging

Similar Articles

Cited By