AquaticTox: A Web-Based Tool for Aquatic Toxicity Evaluation Based on Ensemble Learning to Facilitate the Screening of Green Chemicals.

Xing-Xing Shi, Zhi-Zheng Wang, Yu-Liang Wang, Fan Wang, Guang-Fu Yang
Author Information
  1. Xing-Xing Shi: National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, China.
  2. Zhi-Zheng Wang: National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, China. ORCID
  3. Yu-Liang Wang: National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, China.
  4. Fan Wang: National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, China. ORCID
  5. Guang-Fu Yang: National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, China. ORCID

Abstract

The widespread use of chemical products inevitably brings many side effects as environmental pollutants. Toxicological assessment of compounds to aquatic life plays an important role in protecting the environment from their hazards. However, animal testing approaches for aquatic toxicity evaluation are time-consuming, expensive, and ethically limited, especially when there are a great number of compounds. modeling methods can effectively improve the toxicity evaluation efficiency and save costs. Here, we present a web-based server, AquaticTox, which incorporates a series of ensemble models to predict acute toxicity of organic compounds in aquatic organisms, covering , , , , and . The predictive models are built through ensemble learning algorithms based on six base learners. These ensemble models outperform all corresponding single models, achieving area under the curve (AUC) scores of 0.75-0.92. Compared to the best single models, the average precisions of the ensemble models have been increased by 12-22%. Additionally, a self-built knowledge base of the structure-aquatic toxic mode of action (MOA) relationship was integrated into AquaticTox for toxicity mechanism analysis. Hopefully, the user-friendly tool (https://chemyang.ccnu.edu.cn/ccb/server/AquaticTox); could facilitate the identification of aquatic toxic chemicals and the design of green molecules.

References

  1. J Agric Food Chem. 2017 Feb 8;65(5):1021-1029 [PMID: 28110534]
  2. Int J Environ Res Public Health. 2021 Jan 08;18(2): [PMID: 33430077]
  3. Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):11039-43 [PMID: 23776226]
  4. J Cheminform. 2020 Sep 17;12(1):56 [PMID: 33431035]
  5. Environ Toxicol Chem. 2019 Oct;38(10):2294-2304 [PMID: 31269286]
  6. Environ Toxicol Chem. 2020 May;39(5):953-966 [PMID: 32102113]
  7. Research (Wash D C). 2019 Jul 8;2019:2602414 [PMID: 31549053]
  8. Nat Biotechnol. 2006 Dec;24(12):1565-7 [PMID: 17160063]
  9. Front Neurorobot. 2013 Dec 04;7:21 [PMID: 24409142]
  10. J Chem Inf Model. 2005 Nov-Dec;45(6):1767-74 [PMID: 16309283]
  11. Environ Toxicol Chem. 2016 Nov;35(11):2637-2646 [PMID: 27779828]
  12. J Toxicol Environ Health B Crit Rev. 2010 Feb;13(2-4):51-138 [PMID: 20574894]
  13. Environ Health Perspect. 2003 Aug;111(10):1391-401 [PMID: 12896862]
  14. Sci Bull (Beijing). 2020 Jul 30;65(14):1184-1191 [PMID: 36659148]
  15. Toxicol Sci. 2012 Apr;126(2):291-7 [PMID: 22262567]
  16. Environ Toxicol Chem. 2022 Jun;41(6):1520-1539 [PMID: 35262228]
  17. Aquat Toxicol. 2015 Apr;161:102-7 [PMID: 25700118]
  18. Top Curr Chem (Cham). 2021 Sep 23;379(6):37 [PMID: 34554348]
  19. J Chem Inf Model. 2008 Sep;48(9):1733-46 [PMID: 18729318]
  20. Science. 2020 Jan 24;367(6476):360-363 [PMID: 31974232]
  21. Chemosphere. 2011 Mar;82(11):1636-43 [PMID: 21145574]
  22. Environ Sci Technol. 2017 Sep 5;51(17):10203-10211 [PMID: 28759717]
  23. Regul Toxicol Pharmacol. 2023 Mar;139:105340 [PMID: 36702196]
  24. Environ Toxicol Chem. 2017 Apr;36(4):860-865 [PMID: 28370291]
  25. Environ Sci Technol. 2019 Oct 15;53(20):12071-12080 [PMID: 31517480]
  26. SAR QSAR Environ Res. 2019 Jan;30(1):39-50 [PMID: 30477347]
  27. Environ Toxicol Chem. 2013 Jul;32(7):1441-2 [PMID: 23733666]
  28. Comput Methods Programs Biomed. 2018 Jan;153:1-9 [PMID: 29157442]
  29. Arch Toxicol. 2017 Feb;91(2):549-599 [PMID: 27722929]
  30. Toxicol In Vitro. 2011 Jun;25(4):874-81 [PMID: 21338664]
  31. J Chem Inf Model. 2012 Oct 22;52(10):2570-8 [PMID: 23030316]
  32. Chemosphere. 2000 Apr;40(8):875-83 [PMID: 10718581]
  33. SAR QSAR Environ Res. 2010 Jul;21(5-6):403-13 [PMID: 20818579]
  34. Environ Toxicol Chem. 2019 May;38(5):1062-1073 [PMID: 30714190]
  35. J Comput Chem. 2011 May;32(7):1466-74 [PMID: 21425294]
  36. PLoS One. 2014 Mar 31;9(3):e92436 [PMID: 24686837]
  37. Ecol Appl. 2006 Oct;16(5):2022-7; author reply 2027-34 [PMID: 17069392]
  38. Mol Cell Endocrinol. 2020 May 1;507:110764 [PMID: 32112812]

Word Cloud

Created with Highcharts 10.0.0modelsaquatictoxicityensemblecompoundsevaluationAquaticToxbasesingletoxicwidespreadusechemicalproductsinevitablybringsmanysideeffectsenvironmentalpollutantsToxicologicalassessmentlifeplaysimportantroleprotectingenvironmenthazardsHoweveranimaltestingapproachestime-consumingexpensiveethicallylimitedespeciallygreatnumbermodelingmethodscaneffectivelyimproveefficiencysavecostspresentweb-basedserverincorporatesseriespredictacuteorganicorganismscoveringpredictivebuiltlearningalgorithmsbasedsixlearnersoutperformcorrespondingachievingareacurveAUCscores075-092Comparedbestaverageprecisionsincreased12-22%Additionallyself-builtknowledgestructure-aquaticmodeactionMOArelationshipintegratedmechanismanalysisHopefullyuser-friendlytoolhttps://chemyangccnueducn/ccb/server/AquaticToxfacilitateidentificationchemicalsdesigngreenmoleculesAquaticTox:Web-BasedToolAquaticToxicityEvaluationBasedEnsembleLearningFacilitateScreeningGreenChemicals

Similar Articles

Cited By