Multi-layer graph attention neural networks for accurate drug-target interaction mapping.

Qianwen Lu, Zhiheng Zhou, Qi Wang
Author Information
  1. Qianwen Lu: SDU-ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, China.
  2. Zhiheng Zhou: Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.
  3. Qi Wang: College of Science, China Agricultural University, Beijing, 100083, China. wangqi_math@cau.edu.cn.

Abstract

In the crucial process of drug discovery and repurposing, precise prediction of drug-target interactions (DTIs) is paramount. This study introduces a novel DTI prediction approach-Multi-Layer Graph Attention Neural Network (MLGANN), through a groundbreaking computational framework that effectively harnesses multi-source information to enhance prediction accuracy. MLGANN not only strides forward in constructing a multi-layer DTI network by capturing both direct interactions between drugs and targets as well as their multi-level information but also amalgamates Graph Convolutional Networks (GCN) with a self-attention mechanism to comprehensively integrate diverse data sources. This method exhibited significant performance surpassing existing approaches in comparative experiments, underscoring its immense potential in elevating the efficiency and accuracy of DTI predictions. More importantly, this study accentuates the significance of considering multi-source data information and network heterogeneity in the drug discovery process, offering new perspectives and tools for future pharmaceutical research.

References

  1. Bioinformatics. 2023 Aug 1;39(8): [PMID: 37467066]
  2. Brief Bioinform. 2023 Jan 19;24(1): [PMID: 36592060]
  3. Nature. 2016 Jun 14;534(7607):314-6 [PMID: 27306171]
  4. Bioinformatics. 2020 Jun 1;36(11):3474-3481 [PMID: 32145009]
  5. Brief Bioinform. 2024 Mar 27;25(3): [PMID: 38754409]
  6. Nat Commun. 2021 Nov 22;12(1):6775 [PMID: 34811351]
  7. Semin Cancer Biol. 2021 Jan;68:192-198 [PMID: 32032699]
  8. IEEE/ACM Trans Comput Biol Bioinform. 2021 Jul-Aug;18(4):1596-1607 [PMID: 31689203]
  9. Chem Sci. 2020 Jan 13;11(7):1775-1797 [PMID: 34123272]
  10. IEEE/ACM Trans Comput Biol Bioinform. 2022 Mar-Apr;19(2):655-665 [PMID: 34115592]
  11. Bioinformatics. 2019 Jan 1;35(1):104-111 [PMID: 30561548]
  12. Bioinformatics. 2024 Jul 1;40(7): [PMID: 38913860]
  13. J Cell Mol Med. 2024 Apr;28(7):e18224 [PMID: 38509739]
  14. Bioinformatics. 2021 May 5;37(6):830-836 [PMID: 33070179]
  15. Brief Bioinform. 2021 Nov 5;22(6): [PMID: 34373895]
  16. Nat Commun. 2017 Sep 18;8(1):573 [PMID: 28924171]
  17. IEEE/ACM Trans Comput Biol Bioinform. 2017 May-Jun;14(3):646-656 [PMID: 26890921]
  18. Brief Bioinform. 2021 May 20;22(3): [PMID: 32964234]
  19. Bioinformatics. 2022 May 13;38(10):2847-2854 [PMID: 35561181]
  20. Bioinformatics. 2018 Apr 1;34(7):1164-1173 [PMID: 29186331]

MeSH Term

Neural Networks, Computer
Drug Discovery
Humans
Drug Repositioning

Word Cloud

Created with Highcharts 10.0.0predictionDTIinformationprocessdrugdiscoverydrug-targetinteractionsstudyGraphMLGANNmulti-sourceaccuracynetworkdatacrucialrepurposingpreciseDTIsparamountintroducesnovelapproach-Multi-LayerAttentionNeuralNetworkgroundbreakingcomputationalframeworkeffectivelyharnessesenhancestridesforwardconstructingmulti-layercapturingdirectdrugstargetswellmulti-levelalsoamalgamatesConvolutionalNetworksGCNself-attentionmechanismcomprehensivelyintegratediversesourcesmethodexhibitedsignificantperformancesurpassingexistingapproachescomparativeexperimentsunderscoringimmensepotentialelevatingefficiencypredictionsimportantlyaccentuatessignificanceconsideringheterogeneityofferingnewperspectivestoolsfuturepharmaceuticalresearchMulti-layergraphattentionneuralnetworksaccurateinteractionmapping

Similar Articles

Cited By