CRISPR-Cas9/Cas12a systems for efficient genome editing and large genomic fragment deletions in .

Guoliang Yuan, Shuang Deng, Jeffrey J Czajka, Ziyu Dai, Beth A Hofstad, Joonhoon Kim, Kyle R Pomraning
Author Information
  1. Guoliang Yuan: Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States.
  2. Shuang Deng: Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States.
  3. Jeffrey J Czajka: Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States.
  4. Ziyu Dai: Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States.
  5. Beth A Hofstad: Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States.
  6. Joonhoon Kim: Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States.
  7. Kyle R Pomraning: Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, United States.

Abstract

CRISPR technology has revolutionized fungal genetic engineering by accelerating the pace and expanding the feasible scope of experiments in this field. Among various CRISPR-Cas systems, Cas9 and Cas12a are widely used in genetic and metabolic engineering. In filamentous fungi, both Cas9 and Cas12a have been utilized as CRISPR nucleases. In this work we first compared efficacies and types of genetic edits for CRISPR-Cas9 and -Cas12a systems at the polyketide synthase () gene locus in . By employing a tRNA-based gRNA polycistronic cassette, both Cas9 and Cas12a have demonstrated equally remarkable editing efficacy. Cas12a showed potential superiority over Cas9 protein when one gRNA was used for targeting, achieving an editing efficiency of 86.5% compared to 31.7% for Cas9. Moreover, when employing two gRNAs for targeting, both systems achieved up to 100% editing efficiency for single gene editing. In addition, the CRISPR-Cas9 system has been reported to induce large genomic deletions in various species. However, its use for engineering large chromosomal segments deletions in filamentous fungi still requires optimization. Here, we engineered Cas9 and -Cas12a-induced large genomic fragment deletions by targeting various genomic regions of . ranging from 3.5 kb to 40 kb. Our findings demonstrate that targeted engineering of large chromosomal segments can be achieved, with deletions of up to 69.1% efficiency. Furthermore, by targeting a secondary metabolite gene cluster, we show that fragments over 100 kb can be efficiently and specifically deleted using the CRISPR-Cas9 or -Cas12a system. Overall, in this paper, we present an efficient multi-gRNA genome editing system utilizing Cas9 or Cas12a that enables highly efficient targeted editing of genes and large chromosomal regions in . .

Keywords

References

  1. Nat Biotechnol. 2016 Aug;34(8):863-8 [PMID: 27272384]
  2. BMC Biotechnol. 2021 Feb 11;21(1):15 [PMID: 33573639]
  3. PLoS One. 2015 Jul 15;10(7):e0133085 [PMID: 26177455]
  4. Nucleic Acids Res. 2019 Jul 02;47(W1):W171-W174 [PMID: 31106371]
  5. Rice (N Y). 2020 Jan 21;13(1):4 [PMID: 31965382]
  6. ACS Synth Biol. 2019 Apr 19;8(4):906-910 [PMID: 30939239]
  7. BMC Plant Biol. 2020 Apr 23;20(1):179 [PMID: 32326901]
  8. Sci Rep. 2024 Feb 24;14(1):4508 [PMID: 38402312]
  9. Genome Biol. 2018 Jul 04;19(1):84 [PMID: 29973285]
  10. Appl Microbiol Biotechnol. 2010 Jul;87(4):1463-73 [PMID: 20422182]
  11. ACS Synth Biol. 2015 Nov 20;4(11):1217-25 [PMID: 26451892]
  12. J Biotechnol. 2007 Mar 10;128(4):770-5 [PMID: 17275117]
  13. Nat Commun. 2020 Mar 09;11(1):1281 [PMID: 32152313]
  14. Nat Commun. 2019 Mar 05;10(1):1053 [PMID: 30837474]
  15. Plant Biotechnol J. 2023 Nov;21(11):2196-2208 [PMID: 37641539]
  16. J Biosci Bioeng. 2022 Apr;133(4):353-361 [PMID: 35101371]
  17. Cell Mol Life Sci. 2016 Aug;73(15):2959-68 [PMID: 26817461]
  18. Appl Environ Microbiol. 2008 Dec;74(24):7684-93 [PMID: 18952883]
  19. Nat Biotechnol. 2016 Aug;34(8):869-74 [PMID: 27347757]
  20. Sci Rep. 2017 Aug 23;7(1):9250 [PMID: 28835711]
  21. Plant Methods. 2020 Mar 12;16:37 [PMID: 32190101]
  22. Microbiol Spectr. 2021 Oct 31;9(2):e0089821 [PMID: 34523946]
  23. Fungal Biol Biotechnol. 2023 Jul 8;10(1):15 [PMID: 37422681]
  24. Fungal Genet Biol. 2020 Jan;134:103279 [PMID: 31622672]
  25. FEBS J. 2014 Apr;281(7):1717-25 [PMID: 24494965]
  26. Fungal Biol Biotechnol. 2019 May 01;6:6 [PMID: 31061713]
  27. J Fungi (Basel). 2022 Apr 30;8(5): [PMID: 35628723]
  28. Genome Res. 2014 Dec;24(12):2059-65 [PMID: 25373145]
  29. Nucleic Acids Res. 2020 Sep 04;48(15):8601-8616 [PMID: 32687187]
  30. Cells. 2022 Aug 09;11(16): [PMID: 36010544]
  31. Nature. 2016 Apr 28;532(7600):517-21 [PMID: 27096362]
  32. Plant Cell. 2017 Jun;29(6):1196-1217 [PMID: 28522548]
  33. Fungal Biol Biotechnol. 2021 Dec 28;8(1):23 [PMID: 34963476]
  34. Fungal Genet Biol. 1997 Jun;21(3):373-87 [PMID: 9290250]
  35. Nat Commun. 2018 May 15;9(1):1911 [PMID: 29765029]
  36. Nat Methods. 2007 Mar;4(3):251-6 [PMID: 17293868]
  37. J Basic Microbiol. 2018 Dec;58(12):1100-1104 [PMID: 30198089]
  38. Appl Microbiol Biotechnol. 2019 Sep;103(17):6919-6932 [PMID: 31332488]
  39. Plant Biotechnol J. 2019 Feb;17(2):362-372 [PMID: 29972722]
  40. Cell Discov. 2015 May 12;1:15007 [PMID: 27462408]
  41. Sci Rep. 2014 Dec 22;4:7581 [PMID: 25531445]
  42. Biotechnol Lett. 2016 Apr;38(4):637-42 [PMID: 26687199]
  43. Microorganisms. 2022 Mar 30;10(4): [PMID: 35456803]
  44. Gene. 2017 Sep 5;627:212-221 [PMID: 28625564]
  45. Nat Commun. 2020 May 18;11(1):2474 [PMID: 32424114]
  46. ACS Synth Biol. 2022 Jun 17;11(6):2036-2042 [PMID: 35613368]
  47. Methods Mol Biol. 2014;1163:45-73 [PMID: 24841299]
  48. Fungal Genet Biol. 2024 Feb;170:103863 [PMID: 38154756]
  49. ACS Synth Biol. 2021 Oct 15;10(10):2607-2616 [PMID: 34555894]
  50. Microb Biotechnol. 2022 Dec;15(12):2982-2991 [PMID: 36134724]
  51. Appl Microbiol Biotechnol. 2017 Oct;101(20):7435-7443 [PMID: 28887634]
  52. Sci Rep. 2017 Dec;7(1):59 [PMID: 28246396]
  53. Science. 2013 Feb 15;339(6121):819-23 [PMID: 23287718]
  54. J Nat Prod. 2016 Jun 24;79(6):1492-9 [PMID: 27232848]

Word Cloud

Created with Highcharts 10.0.0Cas9editinglargeCas12adeletionsengineeringsystemsCRISPR-Cas9targetinggenomicgeneticvariousgeneefficiencysystemchromosomalfragmentefficientCRISPRusedfilamentousfungicompared-Cas12aemployinggRNAachievedsegmentsregionstargetedcangenometechnologyrevolutionizedfungalacceleratingpaceexpandingfeasiblescopeexperimentsfieldAmongCRISPR-CaswidelymetabolicutilizednucleasesworkfirstefficaciestypeseditspolyketidesynthaselocustRNA-basedpolycistroniccassettedemonstratedequallyremarkableefficacyshowedpotentialsuperiorityproteinoneachieving865%317%MoreovertwogRNAs100%singleadditionreportedinducespeciesHoweverusestillrequiresoptimizationengineered-Cas12a-inducedranging35 kb40 kbfindingsdemonstrate691%Furthermoresecondarymetaboliteclustershowfragments100 kbefficientlyspecificallydeletedusingOverallpaperpresentmulti-gRNAutilizingenableshighlygenesCRISPR-Cas9/Cas12aAspergillusnigerSquash-PCR

Similar Articles

Cited By