CRISPR-Cas systems and applications for crop bioengineering.

Mireia Uranga, Ana Montserrat Martín-Hernández, Nico De Storme, Fabio Pasin
Author Information
  1. Mireia Uranga: Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium.
  2. Ana Montserrat Martín-Hernández: Centre for Research in Agricultural Genomics (CRAG), Barcelona, Spain.
  3. Nico De Storme: Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium.
  4. Fabio Pasin: Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), Valencia, Spain.

Abstract

CRISPR-Cas technologies contribute to enhancing our understanding of plant gene functions, and to the precise breeding of crop traits. Here, we review the latest progress in plant genome editing, focusing on emerging CRISPR-Cas systems, DNA-free delivery methods, and advanced editing approaches. By illustrating CRISPR-Cas applications for improving crop performance and food quality, we highlight the potential of genome-edited crops to contribute to sustainable agriculture and food security.

Keywords

References

  1. Plant Biotechnol J. 2023 May;21(5):893-895 [PMID: 36628413]
  2. Biochemistry. 2023 Dec 19;62(24):3465-3487 [PMID: 37192099]
  3. Nat Biotechnol. 2020 Feb;38(2):182-188 [PMID: 31873217]
  4. BMC Plant Biol. 2019 Jul 15;19(1):311 [PMID: 31307375]
  5. Mol Plant. 2017 Sep 12;10(9):1238-1241 [PMID: 28645639]
  6. Nat Nanotechnol. 2021 Mar;16(3):243-250 [PMID: 33712738]
  7. Nat Plants. 2020 Jun;6(6):620-624 [PMID: 32483329]
  8. Plant Physiol. 2022 Mar 28;188(4):1848-1851 [PMID: 35078248]
  9. Nat Plants. 2020 Mar;6(3):202-208 [PMID: 32170285]
  10. Nat Rev Genet. 2024 Sep;25(9):603-622 [PMID: 38658741]
  11. Nat Plants. 2021 Apr;7(4):419-427 [PMID: 33846596]
  12. Nat Biotechnol. 2018 Oct 01;: [PMID: 30272678]
  13. Genome Biol. 2017 Oct 6;18(1):190 [PMID: 28985763]
  14. Plant Biotechnol J. 2020 Sep;18(9):1845-1847 [PMID: 31985873]
  15. Genome Biol. 2020 Sep 3;21(1):230 [PMID: 32883370]
  16. Mol Plant. 2023 Mar 6;16(3):616-631 [PMID: 36751129]
  17. Nat Biotechnol. 2019 Mar;37(3):287-292 [PMID: 30833776]
  18. Front Genome Ed. 2023 Mar 13;5:1138843 [PMID: 36992681]
  19. Plant Physiol Biochem. 2023 Dec;205:108094 [PMID: 37995578]
  20. Plant Genome. 2023 Jun;16(2):e20220 [PMID: 35698891]
  21. Plant Commun. 2021 Feb 10;2(2):100168 [PMID: 33898980]
  22. J Exp Bot. 2024 Sep 11;75(17):5344-5356 [PMID: 38366636]
  23. Hortic Res. 2023 Dec 19;11(1):uhad279 [PMID: 38895601]
  24. Nat Biotechnol. 2020 May;38(5):579-581 [PMID: 32152597]
  25. Nat Plants. 2022 Jun;8(6):611-616 [PMID: 35606499]
  26. Nat Biotechnol. 2022 Jan;40(1):9-11 [PMID: 34907351]
  27. Nat Biotechnol. 2020 Jul;38(7):875-882 [PMID: 31932727]
  28. Genome Res. 2023 May;33(5):798-809 [PMID: 37290935]
  29. Plant Biotechnol J. 2023 Oct;21(10):1990-2001 [PMID: 37589238]
  30. New Phytol. 2019 Sep;223(4):2120-2133 [PMID: 31059138]
  31. Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2216822120 [PMID: 36652483]
  32. Plant Biotechnol J. 2020 Jun;18(6):1384-1395 [PMID: 31769589]
  33. Front Plant Sci. 2018 Apr 26;9:559 [PMID: 29755497]
  34. Plant Biotechnol J. 2022 Jul;20(7):1238-1240 [PMID: 35534986]
  35. Plant Cell. 2020 May;32(5):1397-1413 [PMID: 32102844]
  36. Plant J. 2017 Aug;91(4):714-724 [PMID: 28502081]
  37. Mol Plant. 2018 Sep 10;11(9):1210-1213 [PMID: 29857174]
  38. Nat Plants. 2023 Apr;9(4):588-604 [PMID: 37024659]
  39. Plant Physiol. 2024 Mar 29;194(4):2229-2239 [PMID: 38243587]
  40. Genome Biol. 2024 Feb 26;25(1):59 [PMID: 38409014]
  41. Cell. 2017 Oct 5;171(2):470-480.e8 [PMID: 28919077]
  42. Plant Physiol. 2022 Mar 28;188(4):1917-1930 [PMID: 35088855]
  43. Nature. 2023 Aug;620(7974):660-668 [PMID: 37380027]
  44. Front Bioeng Biotechnol. 2019 May 29;7:120 [PMID: 31192203]
  45. Plant Commun. 2023 Jul 10;4(4):100601 [PMID: 37060177]
  46. Nat Plants. 2021 Mar;7(3):287-294 [PMID: 33619356]
  47. Mol Plant. 2020 Apr 6;13(4):565-572 [PMID: 32001363]
  48. Front Plant Sci. 2022 Jun 10;13:878037 [PMID: 35755703]
  49. Front Bioeng Biotechnol. 2024 Aug 16;12:1395772 [PMID: 39219618]
  50. Plant Biotechnol J. 2022 Oct;20(10):2006-2022 [PMID: 35778883]
  51. Nat Biotechnol. 2022 May;40(5):731-740 [PMID: 34887556]
  52. Hortic Res. 2023 Dec 11;11(1):uhad250 [PMID: 38269296]
  53. Plant Physiol. 2022 Jun 1;189(2):679-686 [PMID: 35262730]
  54. Nat Biotechnol. 2018 Oct 01;: [PMID: 30272676]
  55. Science. 2021 Oct;374(6563):57-65 [PMID: 34591643]
  56. Nat Plants. 2018 Oct;4(10):766-770 [PMID: 30287957]
  57. Mol Plant Pathol. 2016 Sep;17(7):1140-53 [PMID: 26808139]
  58. Plant Cell Rep. 2017 Jan;36(1):117-128 [PMID: 27699473]
  59. Curr Opin Biotechnol. 2023 Jun;81:102946 [PMID: 37080109]
  60. Plant Biotechnol J. 2023 Dec;21(12):2597-2610 [PMID: 37571976]
  61. Plants (Basel). 2022 Sep 23;11(19): [PMID: 36235360]
  62. Front Plant Sci. 2019 Feb 06;10:40 [PMID: 30787936]
  63. Nature. 2024 Jun;630(8018):994-1002 [PMID: 38926616]
  64. BMC Biol. 2019 Jan 31;17(1):9 [PMID: 30704461]
  65. Theor Appl Genet. 2020 Aug;133(8):2401-2411 [PMID: 32448919]
  66. Plant Commun. 2024 Feb 12;5(2):100741 [PMID: 37897041]
  67. aBIOTECH. 2024 Jun 8;5(2):225-230 [PMID: 38974856]
  68. Commun Biol. 2021 May 5;4(1):529 [PMID: 33953336]
  69. Methods Mol Biol. 2019;1917:3-24 [PMID: 30610624]
  70. Plant Biotechnol J. 2017 May;15(5):648-657 [PMID: 27862889]
  71. Mol Biol Rep. 2020 Dec;47(12):9831-9847 [PMID: 33222118]
  72. Plant Biotechnol J. 2024 Mar;22(3):751-758 [PMID: 37932934]
  73. Nature. 2024 Jun;630(8018):984-993 [PMID: 38926615]
  74. Cell. 2021 Mar 4;184(5):1156-1170.e14 [PMID: 33539781]
  75. Plant Biotechnol J. 2023 Jul;21(7):1454-1464 [PMID: 37139586]
  76. Nature. 2022 Feb;602(7897):455-460 [PMID: 35140403]
  77. Front Plant Sci. 2020 Jul 09;11:1048 [PMID: 32742269]
  78. Nat Methods. 2023 Jul;20(7):1029-1036 [PMID: 37231266]
  79. Plant Biotechnol J. 2020 Dec;18(12):2385-2387 [PMID: 32485068]
  80. J Exp Bot. 2024 Sep 06;: [PMID: 39238167]
  81. Hortic Res. 2022 Sep 19;10(1):uhac214 [PMID: 36643741]
  82. Nat Plants. 2020 Jul;6(7):773-779 [PMID: 32601419]
  83. Plant Biotechnol J. 2019 Jul;17(7):1191-1193 [PMID: 30963647]
  84. Mol Plant. 2024 May 6;17(5):824-837 [PMID: 38520090]
  85. Nat Commun. 2023 Jul 5;14(1):3957 [PMID: 37402755]
  86. Plant Physiol. 2017 Aug;174(4):2023-2037 [PMID: 28646085]
  87. ACS Agric Sci Technol. 2022 Apr 18;2(2):192-201 [PMID: 35548699]

Word Cloud

Created with Highcharts 10.0.0CRISPR-CascropgenomeeditingcontributeplantprecisebreedingsystemsapplicationsfoodCRISPRtechnologiesenhancingunderstandinggenefunctionstraitsreviewlatestprogressfocusingemergingDNA-freedeliverymethodsadvancedapproachesillustratingimprovingperformancequalityhighlightpotentialgenome-editedcropssustainableagriculturesecuritybioengineeringclusteredregularlyinterspacedshortpalindromicrepeatCas9associatedprotein9-mediatedtraitimprovementengineeringtransgene-free

Similar Articles

Cited By