Updated aspects of alpha-Solanine as a potential anticancer agent: Mechanistic insights and future directions.

Sudeshna Nandi, Rimpa Sikder, Anish Nag, Somanjana Khatua, Surjit Sen, Nilanjan Chakraborty, Arghya Naskar, Kairat Zhakipbekov, Krishnendu Acharya, Solomon Habtemariam, Dilek Arslan Ateşşahin, Tamar Goloshvili, Afaf Ahmed Aldahish, Javad Sharifi-Rad, Daniela Calina
Author Information
  1. Sudeshna Nandi: Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany University of Calcutta Kolkata India.
  2. Rimpa Sikder: Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany University of Calcutta Kolkata India.
  3. Anish Nag: Department of Life Sciences CHRIST (Deemed to be University) Bangalore Karnataka India.
  4. Somanjana Khatua: Department of Botany, Faculty of Science University of Allahabad Prayagraj Uttar Pradesh India.
  5. Surjit Sen: Department of Botany Fakir Chand College Kolkata India.
  6. Nilanjan Chakraborty: Department of Botany Scottish Church College Kolkata India.
  7. Arghya Naskar: Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany University of Calcutta Kolkata India.
  8. Kairat Zhakipbekov: Department of Organization and Management and Economics of Pharmacy and Clinical Pharmacy Asfendiyarov Kazakh National Medical University Almaty Kazakhstan.
  9. Krishnendu Acharya: Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany University of Calcutta Kolkata India.
  10. Solomon Habtemariam: Pharmacognosy Research & Herbal Analysis Services UK Kent UK.
  11. Dilek Arslan Ateşşahin: Department of Plant and Animal Production, Baskil Vocational School Fırat University Elazıg Turkey.
  12. Tamar Goloshvili: Department of Plant Physiology and Genetic Resources Institute of Botany, Ilia State University Tbilisi Georgia.
  13. Afaf Ahmed Aldahish: Department of Pharmacology, College of Pharmacy King Khalid University Abha Kingdom of Saudi Arabia.
  14. Javad Sharifi-Rad: Department of Biomedical Sciences College of Medicine, Korea University Seoul Republic of Korea. ORCID
  15. Daniela Calina: Department of Clinical Pharmacy University of Medicine and Pharmacy of Craiova Craiova Romania.

Abstract

cancer remains a critical global health challenge, with limited progress in reducing mortality despite advancements in diagnosis and treatment. The growing resistance of tumors to existing chemotherapy exacerbates this burden. In response, the search for new anticancer compounds from plants has intensified, given their historical success in yielding effective treatments. This review focuses on α-solanine, a glycoalkaloid primarily derived from potato tubers and nightshade family plants, recognized for its diverse biological activities, including anti-allergic, antipyretic, anti-inflammatory, anti-diabetic, and antibiotic properties. Recently, α-solanine has gained attention as a potential anticancer agent. Utilizing resources like PubMed/MedLine, ScienceDirect, Web of Science, Scopus, the American Chemical Society, Google Scholar, Springer Link, Wiley, and various commercial websites, this review consolidates two decades of research on α-solanine's anticancer effects and mechanisms against nine different cancers, highlighting its role in modulating various signaling pathways. It also discusses α-solanine's potential as a lead compound in cancer therapy. The abundant availability of potato peel, often discarded as waste or sold cheaply, is suggested as a sustainable source for large-scale α-solanine extraction. The study concludes that α-solanine holds promise as a standalone or adjunctive cancer treatment. However, further research is necessary to optimize this lead compound and mitigate its toxicity through various strategies.

Keywords

References

  1. Foods. 2022 Jan 28;11(3): [PMID: 35159533]
  2. Eur J Pharm Biopharm. 2017 Mar;112:234-248 [PMID: 27914234]
  3. Food Chem. 2021 Dec 15;365:130461 [PMID: 34229992]
  4. Cancer Med. 2016 Nov;5(11):3214-3222 [PMID: 27726305]
  5. Anticancer Agents Med Chem. 2019;19(18):2197-2210 [PMID: 31566136]
  6. Front Pharmacol. 2022 Dec 07;13:979451 [PMID: 36569285]
  7. Cancers (Basel). 2023 Jan 26;15(3): [PMID: 36765722]
  8. ACS Omega. 2023 May 12;8(20):18266-18274 [PMID: 37251124]
  9. Phytochemistry. 2010 Feb;71(2-3):179-87 [PMID: 19932496]
  10. Cell. 2023 Apr 13;186(8):1564-1579 [PMID: 37059065]
  11. Oncol Lett. 2016 Mar;11(3):2145-2151 [PMID: 26998139]
  12. Crit Rev Food Sci Nutr. 1980;12(4):371-405 [PMID: 6996922]
  13. Cancers (Basel). 2023 Apr 08;15(8): [PMID: 37190134]
  14. Cell Death Differ. 2023 May;30(5):1097-1154 [PMID: 37100955]
  15. Biokhimiia. 1961 Jul-Aug;26:723-8 [PMID: 13709935]
  16. Oncotarget. 2015 Dec 8;6(39):42150-68 [PMID: 26517524]
  17. Int J Clin Pharm. 2018 Aug;40(4):832-841 [PMID: 30069667]
  18. J Agric Food Chem. 2006 Nov 15;54(23):8655-81 [PMID: 17090106]
  19. Hepatology. 2023 Sep 1;78(3):911-928 [PMID: 37595128]
  20. Biomed Res Int. 2014;2014:805926 [PMID: 24949471]
  21. J Agric Food Chem. 2019 Jul 10;67(27):7660-7673 [PMID: 31250646]
  22. Lancet. 2023 Dec 17;400(10369):2221-2248 [PMID: 36423648]
  23. Ultrason Sonochem. 2014 Jul;21(4):1470-6 [PMID: 24582305]
  24. Front Med. 2023 Dec;17(6):1135-1169 [PMID: 38151666]
  25. J Biomed Nanotechnol. 2015 Nov;11(11):1859-98 [PMID: 26554150]
  26. Toxicol Lett. 1980 Jun;6(1):29-32 [PMID: 7423541]
  27. Chin Med. 2023 Mar 15;18(1):27 [PMID: 36918923]
  28. Foods. 2020 May 09;9(5): [PMID: 32397489]
  29. CA Cancer J Clin. 2022 Jan;72(1):7-33 [PMID: 35020204]
  30. Medicine (Baltimore). 2023 Feb 22;102(8):e32899 [PMID: 36827002]
  31. Dis Mon. 2009 Jun;55(6):391-402 [PMID: 19446683]
  32. J Agric Food Chem. 2004 Apr 7;52(7):2079-83 [PMID: 15053555]
  33. Food Chem Toxicol. 1996 May;34(5):439-48 [PMID: 8655092]
  34. Food Chem. 2013 Jun 1;138(2-3):1189-97 [PMID: 23411230]
  35. Front Immunol. 2023 Jun 02;14:1198972 [PMID: 37334350]
  36. Eur J Pharmacol. 2013 Oct 15;718(1-3):1-9 [PMID: 24051269]
  37. Environ Toxicol. 2022 Feb;37(2):212-223 [PMID: 34655286]
  38. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  39. Nat Rev Dis Primers. 2021 Feb 4;7(1):9 [PMID: 33542230]
  40. Lipids. 1995 Mar;30(3):191-202 [PMID: 7791527]
  41. Life Sci. 2016 Mar 1;148:260-7 [PMID: 26854999]
  42. Biomed Pharmacother. 2023 Apr;160:114332 [PMID: 36736282]
  43. Int J Food Sci. 2023 Apr 27;2023:9947841 [PMID: 37153649]
  44. Cancer Cell Int. 2022 Dec 13;22(1):407 [PMID: 36514100]
  45. Int J Mol Sci. 2022 Mar 31;23(7): [PMID: 35409206]
  46. Acta Biochim Pol. 1997;44(2):209-14 [PMID: 9360709]
  47. Recent Pat Anticancer Drug Discov. 2022;17(4):396-409 [PMID: 35049438]
  48. Front Microbiol. 2022 Oct 12;13:1023698 [PMID: 36312939]
  49. World J Gastroenterol. 2006 Jun 7;12(21):3359-67 [PMID: 16733852]
  50. JAMA Oncol. 2023 Oct 1;9(10):1401-1416 [PMID: 37676656]
  51. Oncol Rep. 2020 May;43(5):1387-1396 [PMID: 32323807]
  52. Exp Ther Med. 2016 Sep;12(3):1525-1530 [PMID: 27588073]
  53. Cell Physiol Biochem. 2016;39(3):996-1010 [PMID: 27536892]
  54. Regul Toxicol Pharmacol. 2005 Feb;41(1):66-72 [PMID: 15649828]
  55. Proc Natl Acad Sci U S A. 2003 May 27;100(11):6866-71 [PMID: 12748386]
  56. Proc Jpn Acad Ser B Phys Biol Sci. 2012;88(3):41-52 [PMID: 22450534]
  57. Chin Med. 2023 Mar 2;18(1):23 [PMID: 36859262]
  58. Rom J Morphol Embryol. 2015;56(1):175-81 [PMID: 25826503]
  59. Nutr Cancer. 2021;73(9):1541-1552 [PMID: 32762370]
  60. Recent Pat Anticancer Drug Discov. 2018;13(2):240-247 [PMID: 29600769]
  61. Cell Mol Life Sci. 2004 Jun;61(12):1401-26 [PMID: 15197467]
  62. J Agric Food Chem. 2008 Sep 24;56(18):8753-60 [PMID: 18710251]
  63. Lancet Gastroenterol Hepatol. 2022 Jul;7(7):627-647 [PMID: 35397795]
  64. Phytochemistry. 2006 Aug;67(15):1590-7 [PMID: 16298403]
  65. Lipids. 2007 Feb;42(1):47-54 [PMID: 17393210]
  66. Front Oncol. 2022 Jun 08;12:926975 [PMID: 35756648]
  67. Phytochemistry. 2005 Feb;66(3):305-11 [PMID: 15680987]
  68. Br J Cancer. 1996 Sep;74(5):677-82 [PMID: 8795567]
  69. J BUON. 2020 May-Jun;25(3):1614-1618 [PMID: 32862612]
  70. Biol Pharm Bull. 2010;33(10):1685-91 [PMID: 20930376]
  71. J Agric Food Chem. 2001 Jan;49(1):92-7 [PMID: 11170564]
  72. J Oncol. 2021 Dec 10;2021:5905357 [PMID: 34925509]
  73. Environ Toxicol. 2022 Jan;37(1):52-68 [PMID: 34581487]
  74. Molecules. 2014 Aug 11;19(8):11896-914 [PMID: 25116803]
  75. Chem Rev. 2011 Oct 12;111(10):6423-51 [PMID: 21902244]
  76. Nat Rev Drug Discov. 2015 Feb;14(2):111-29 [PMID: 25614221]
  77. Res Commun Chem Pathol Pharmacol. 1976 Feb;13(2):161-71 [PMID: 1257605]
  78. Cell Death Dis. 2015 Aug 27;6:e1860 [PMID: 26313911]
  79. 3 Biotech. 2023 Jun;13(6):211 [PMID: 37251731]
  80. EFSA J. 2020 Aug 11;18(8):e06222 [PMID: 32788943]
  81. J Chromatogr A. 2004 Oct 29;1054(1-2):143-55 [PMID: 15553139]
  82. Ther Deliv. 2014 Feb;5(2):149-71 [PMID: 24483194]
  83. Mol Med Rep. 2017 Dec;16(6):8771-8780 [PMID: 29039613]
  84. Med Res Rev. 2016 Jan;36(1):119-43 [PMID: 25820039]
  85. Signal Transduct Target Ther. 2023 May 11;8(1):198 [PMID: 37169756]
  86. Tumour Biol. 2016 May;37(5):6437-46 [PMID: 26631041]
  87. Rev Environ Contam Toxicol. 1990;113:47-137 [PMID: 2404325]
  88. Xenobiotica. 1993 Sep;23(9):995-1005 [PMID: 8291267]
  89. Molecules. 2023 Jun 23;28(13): [PMID: 37446619]
  90. Integr Cancer Ther. 2020 Jan-Dec;19:1534735420909895 [PMID: 32975458]
  91. Eur J Pharmacol. 2016 Jan 15;771:93-8 [PMID: 26688571]
  92. Semin Oncol Nurs. 2017 May;33(2):121-128 [PMID: 28343835]
  93. Cancer Cell Int. 2022 Sep 8;22(1):280 [PMID: 36076273]
  94. J Agric Food Chem. 2004 May 19;52(10):2832-9 [PMID: 15137822]
  95. Phytochemistry. 2015 May;113:24-32 [PMID: 25556315]
  96. Int J Mol Sci. 2020 Dec 26;22(1): [PMID: 33375363]
  97. J Agric Food Chem. 2015 Apr 8;63(13):3323-37 [PMID: 25821990]
  98. J Ethnopharmacol. 2021 Dec 5;281:114437 [PMID: 34391861]
  99. Front Pharmacol. 2020 May 07;11:565 [PMID: 32477108]
  100. Front Nutr. 2021 Nov 25;8:790582 [PMID: 34938764]
  101. PLoS One. 2014 Feb 05;9(2):e87868 [PMID: 24505326]
  102. Toxins (Basel). 2021 Mar 13;13(3): [PMID: 33805658]
  103. Annu Rev Med. 2002;53:615-27 [PMID: 11818492]
  104. J Ethnopharmacol. 2008 Jan 17;115(2):194-202 [PMID: 18022776]
  105. J Urol. 2023 Jun;209(6):1082-1090 [PMID: 37096583]
  106. Biomed Pharmacother. 2019 Apr;112:108656 [PMID: 30970507]
  107. Oncol Lett. 2018 May;15(5):7383-7388 [PMID: 29731890]
  108. Food Sci Nutr. 2023 Jan 13;11(4):1657-1670 [PMID: 37051367]
  109. Biomed Pharmacother. 2023 May;161:114428 [PMID: 36841029]
  110. Transl Cancer Res. 2021 Mar;10(3):1578-1582 [PMID: 35116482]
  111. FEBS Lett. 1997 Jan 6;400(3):271-4 [PMID: 9009212]
  112. Oncol Lett. 2018 Jun;15(6):10070-10076 [PMID: 29928376]
  113. Int J Med Sci. 2012;9(3):193-9 [PMID: 22408567]

Word Cloud

Created with Highcharts 10.0.0anticancerα-solaninepotentialvarioustreatmentplantsreviewpotatoresearchα-solanine'smechanismsleadcompoundcancerCancerremainscriticalglobalhealthchallengelimitedprogressreducingmortalitydespiteadvancementsdiagnosisgrowingresistancetumorsexistingchemotherapyexacerbatesburdenresponsesearchnewcompoundsintensifiedgivenhistoricalsuccessyieldingeffectivetreatmentsfocusesglycoalkaloidprimarilyderivedtubersnightshadefamilyrecognizeddiversebiologicalactivitiesincludinganti-allergicantipyreticanti-inflammatoryanti-diabeticantibioticpropertiesRecentlygainedattentionagentUtilizingresourceslikePubMed/MedLineScienceDirectWebScienceScopusAmericanChemicalSocietyGoogleScholarSpringerLinkWileycommercialwebsitesconsolidatestwodecadeseffectsninedifferentcancershighlightingrolemodulatingsignalingpathwaysalsodiscussestherapyabundantavailabilitypeeloftendiscardedwastesoldcheaplysuggestedsustainablesourcelarge-scaleextractionstudyconcludesholdspromisestandaloneadjunctiveHowevernecessaryoptimizemitigatetoxicitystrategiesUpdatedaspectsalpha-Solanineagent:MechanisticinsightsfuturedirectionsSolanaceaeapoptosisglycoalkaloidsα‐Solanine

Similar Articles

Cited By