Enhancing the differential diagnosis of small pulmonary nodules: a comprehensive model integrating plasma methylation, protein biomarkers, and LDCT imaging features.

Meng Yang, Huansha Yu, Hongxiang Feng, Jianghui Duan, Kaige Wang, Bing Tong, Yunzhi Zhang, Wei Li, Ye Wang, Chaoyang Liang, Hongliang Sun, Dingrong Zhong, Bei Wang, Huang Chen, Chengxiang Gong, Qiye He, Zhixi Su, Rui Liu, Peng Zhang
Author Information
  1. Meng Yang: Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, People's Republic of China. yangm_zoe@163.com.
  2. Huansha Yu: Experimental Animal Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
  3. Hongxiang Feng: Department of Thoracic Surgery, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, People's Republic of China.
  4. Jianghui Duan: Department of Radiology, China-Japan Friendship Hospital, Beijing, People's Republic of China.
  5. Kaige Wang: Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Cheng Du, Sichuan, People's Republic of China.
  6. Bing Tong: Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, People's Republic of China.
  7. Yunzhi Zhang: Singlera Genomics (Jiangsu) Inc, Shanghai, 201321, China.
  8. Wei Li: Singlera Genomics (Jiangsu) Inc, Shanghai, 201321, China.
  9. Ye Wang: Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Cheng Du, Sichuan, People's Republic of China.
  10. Chaoyang Liang: Department of Thoracic Surgery, Center of Respiratory Medicine, China-Japan Friendship Hospital, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, People's Republic of China.
  11. Hongliang Sun: Department of Radiology, China-Japan Friendship Hospital, Beijing, People's Republic of China.
  12. Dingrong Zhong: Department of Pathology, China-Japan Friendship Hospital, Beijing, People's Republic of China.
  13. Bei Wang: Department of Pathology, China-Japan Friendship Hospital, Beijing, People's Republic of China.
  14. Huang Chen: Department of Pathology, China-Japan Friendship Hospital, Beijing, People's Republic of China.
  15. Chengxiang Gong: Singlera Genomics (Jiangsu) Inc, Shanghai, 201321, China.
  16. Qiye He: Singlera Genomics (Jiangsu) Inc, Shanghai, 201321, China.
  17. Zhixi Su: Singlera Genomics (Jiangsu) Inc, Shanghai, 201321, China. zhixi.su@singleragenomics.com.
  18. Rui Liu: Singlera Genomics (Jiangsu) Inc, Shanghai, 201321, China. rliu@singleragenomics.com.
  19. Peng Zhang: Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China. zhangpeng1121@tongji.edu.cn.

Abstract

BACKGROUND: Accurate differentiation between malignant and benign pulmonary nodules, especially those measuring 5-10 mm in diameter, continues to pose a significant diagnostic challenge. This study introduces a novel, precise approach by integrating circulating cell-free DNA (cfDNA) methylation patterns, protein profiling, and computed tomography (CT) imaging features to enhance the classification of pulmonary nodules.
METHODS: Blood samples were collected from 419 participants diagnosed with pulmonary nodules ranging from 5 to 30 mm in size, before any disease-altering procedures such as treatment or surgical intervention. High-throughput bisulfite sequencing was used to conduct DNA methylation profiling, while protein profiling was performed utilizing the Olink proximity extension assay. The dataset was divided into a training set and an independent test set. The training set included 162 matched cases of benign and malignant nodules, balanced for sex and age. In contrast, the test set consisted of 46 benign and 49 malignant nodules. By effectively integrating both molecular (DNA methylation and protein profiling) and CT imaging parameters, a sophisticated deep learning-based classifier was developed to accurately distinguish between benign and malignant pulmonary nodules.
RESULTS: Our results demonstrate that the integrated model is both accurate and robust in distinguishing between benign and malignant pulmonary nodules. It achieved an AUC score 0.925 (sensitivity���=���83.7%, specificity���=���82.6%) in classifying test set. The performance of the integrated model was significantly higher than that of individual methylation (AUC���=���0.799, P���=���0.004), protein (AUC���=���0.846, P���=���0.009), and imaging models (AUC���=���0.866, P���=���0.01). Importantly, the integrated model achieved a higher AUC of 0.951 (sensitivity���=���83.9%, specificity���=���89.7%) in 5-10 mm small nodules. These results collectively confirm the accuracy and robustness of our model in detecting malignant nodules from benign ones.
CONCLUSIONS: Our study presents a promising noninvasive approach to distinguish the malignancy of pulmonary nodules using multiple molecular and imaging features, which has the potential to assist in clinical decision-making.
TRIAL REGISTRATION: This study was registered on ClinicalTrials.gov on 01/01/2020 (NCT05432128). https://classic.
CLINICALTRIALS: gov/ct2/show/NCT05432128 .

Keywords

Associated Data

ClinicalTrials.gov | NCT05432128

References

  1. Nat Biomed Eng. 2021 Jun;5(6):586-599 [PMID: 34131323]
  2. Dis Markers. 2007;23(1-2):5-30 [PMID: 17325423]
  3. Sci Rep. 2024 Jun 26;14(1):14797 [PMID: 38926407]
  4. J Cancer Res Clin Oncol. 2023 Sep;149(12):10737-10752 [PMID: 37311985]
  5. Radiology. 2019 Mar;290(3):783-792 [PMID: 30561278]
  6. J Thorac Oncol. 2016 Dec;11(12):2120-2128 [PMID: 27422797]
  7. Expert Rev Mol Diagn. 2019 Sep;19(9):785-793 [PMID: 31414918]
  8. Exp Ther Med. 2018 Mar;15(3):2667-2673 [PMID: 29467859]
  9. Nat Commun. 2021 May 3;12(1):2493 [PMID: 33941778]
  10. N Engl J Med. 2020 Feb 6;382(6):503-513 [PMID: 31995683]
  11. Diagn Progn Res. 2019 Oct 04;3:18 [PMID: 31592444]
  12. EBioMedicine. 2018 Apr;30:120-128 [PMID: 29576497]
  13. Respir Res. 2023 Jun 17;24(1):163 [PMID: 37330511]
  14. Biochim Biophys Acta. 2016 Nov;1862(11):2043-2053 [PMID: 27523631]
  15. J Clin Oncol. 2022 Mar 10;40(8):876-883 [PMID: 34995129]
  16. Chest. 2016 Oct;150(4):877-893 [PMID: 26923625]
  17. J Clin Invest. 2021 May 17;131(10): [PMID: 33793424]
  18. Ann Transl Med. 2020 Sep;8(18):1191 [PMID: 33241040]
  19. Lancet Digit Health. 2023 Oct;5(10):e647-e656 [PMID: 37567793]
  20. Biomolecules. 2022 Dec 08;12(12): [PMID: 36551266]
  21. Am J Transl Res. 2019 Aug 15;11(8):4866-4880 [PMID: 31497205]
  22. Cancer Res. 2019 Jan 1;79(1):263-273 [PMID: 30487137]
  23. Cancers (Basel). 2023 Jun 29;15(13): [PMID: 37444527]
  24. Nat Med. 2014 May;20(5):548-54 [PMID: 24705333]
  25. Precis Clin Med. 2019 Mar;2(1):45-56 [PMID: 35694699]
  26. J Thorac Oncol. 2021 Feb;16(2):228-236 [PMID: 33137463]
  27. Thorax. 2015 Aug;70 Suppl 2:ii1-ii54 [PMID: 26082159]
  28. Sci Transl Med. 2014 Feb 19;6(224):224ra24 [PMID: 24553385]
  29. Cancer Res. 2017 Nov 1;77(21):e104-e107 [PMID: 29092951]
  30. Br J Cancer. 2014 Oct 14;111(8):1482-9 [PMID: 25157833]
  31. Adv Sci (Weinh). 2021 May 07;8(13):2100104 [PMID: 34258160]
  32. Chest. 2018 Sep;154(3):491-500 [PMID: 29496499]
  33. J Thorac Dis. 2014 Jun;6(6):668-76 [PMID: 24976989]
  34. J Thorac Oncol. 2019 Sep;14(9):1513-1527 [PMID: 31228621]
  35. Nat Commun. 2023 Jun 1;14(1):3042 [PMID: 37264016]
  36. Ann Am Thorac Soc. 2014 Dec;11(10):1586-91 [PMID: 25386795]
  37. Am J Respir Crit Care Med. 2012 Jan 1;185(1):85-9 [PMID: 21997335]
  38. Nat Med. 2008 Sep;14(9):985-90 [PMID: 18670422]
  39. Nat Commun. 2020 Jul 21;11(1):3475 [PMID: 32694610]
  40. Adv Sci (Weinh). 2023 May;10(14):e2206896 [PMID: 36814305]
  41. Eur Radiol. 2015 Feb;25(2):480-7 [PMID: 25216770]

Grants

  1. 2022-NHLHCRF-LX-01/National High Level Hospital Clinical Research Funding
  2. 2019YFC1315800/National Key Research & Development Program of China
  3. 2019YFC1315803/National Key Research & Development Program of China
  4. 2023YFC2508605/National Key Research & Development Program of China

MeSH Term

Adult
Aged
Female
Humans
Male
Middle Aged
Biomarkers, Tumor
Diagnosis, Differential
DNA Methylation
Lung Neoplasms
Multiple Pulmonary Nodules
ROC Curve
Solitary Pulmonary Nodule
Tomography, X-Ray Computed

Chemicals

Biomarkers, Tumor

Word Cloud

Created with Highcharts 10.0.0nodulespulmonarymalignantbenignmethylationmodelproteinprofilingimagingsetDNAstudyintegratingfeaturestestintegratedAUC���=���0P���=���05-10 mmapproachCTclassificationtrainingmoleculardistinguishresultsachievedAUC0sensitivity���=���837%highersmallBACKGROUND:Accuratedifferentiationespeciallymeasuringdiametercontinuesposesignificantdiagnosticchallengeintroducesnovelprecisecirculatingcell-freecfDNApatternscomputedtomographyenhanceMETHODS:Bloodsamplescollected419participantsdiagnosedranging530 mmsizedisease-alteringprocedurestreatmentsurgicalinterventionHigh-throughputbisulfitesequencingusedconductperformedutilizingOlinkproximityextensionassaydatasetdividedindependentincluded162matchedcasesbalancedsexagecontrastconsisted4649effectivelyparameterssophisticateddeeplearning-basedclassifierdevelopedaccuratelyRESULTS:demonstrateaccuraterobustdistinguishingscore925specificity���=���826%classifyingperformancesignificantlyindividual799004846009models86601Importantly9519%specificity���=���89collectivelyconfirmaccuracyrobustnessdetectingonesCONCLUSIONS:presentspromisingnoninvasivemalignancyusingmultiplepotentialassistclinicaldecision-makingTRIALREGISTRATION:registeredClinicalTrialsgov01/01/2020NCT05432128https://classicCLINICALTRIALS:gov/ct2/show/NCT05432128Enhancingdifferentialdiagnosisnodules:comprehensiveplasmabiomarkersLDCTCell-freeImagingIntegratedProteinPulmonary

Similar Articles

Cited By (1)