The Role of Foveal Cortex in Discriminating Peripheral Stimuli: The Sketchpad Hypothesis.

Carolina Maria Oletto, Giulio Contemori, Marco Bertamini, Luca Battaglini
Author Information
  1. Carolina Maria Oletto: Department of General Psychology, University of Padova, 35131 Padova, Italy. ORCID
  2. Giulio Contemori: Department of General Psychology, University of Padova, 35131 Padova, Italy. ORCID
  3. Marco Bertamini: Department of General Psychology, University of Padova, 35131 Padova, Italy. ORCID
  4. Luca Battaglini: Department of General Psychology, University of Padova, 35131 Padova, Italy. ORCID

Abstract

Foveal (central) and peripheral vision are strongly interconnected to provide an integrated experience of the world around us. Recently, it has been suggested that there is a feedback mechanism that links foveal and peripheral vision. This peripheral-to-foveal feedback differs from other feedback mechanisms in that during visual processing a novel representation of a stimulus is formed in a different cortical region than that of the feedforward representation. The functional role of foveal feedback is not yet completely understood, but some evidence from neuroimaging studies suggests a link with peripheral shape processing. Behavioural and transcranial magnetic stimulation studies show impairment in peripheral shape discrimination when the foveal retinotopic cortex is disrupted post stimulus presentation. This review aims to link these findings to the visual sketchpad hypothesis. According to this hypothesis, foveal retinotopic cortex stores task-relevant information to aid identification of peripherally presented objects. We discuss how the characteristics of foveal feedback support this hypothesis and rule out other possible explanations. We also discuss the possibility that the foveal feedback may be independent of the sensory modality of the stimulation.

Keywords

References

  1. PLoS One. 2020 Jan 30;15(1):e0219725 [PMID: 31999697]
  2. Science. 1999 Apr 2;284(5411):167-70 [PMID: 10102821]
  3. Eur J Neurosci. 2009 Oct;30(7):1393-400 [PMID: 19788574]
  4. Cortex. 2013 Jan;49(1):327-35 [PMID: 22503283]
  5. J Vis. 2016;16(3):15 [PMID: 26885627]
  6. Annu Rev Neurosci. 1995;18:193-222 [PMID: 7605061]
  7. Vision Res. 1998 Aug;38(15-16):2429-54 [PMID: 9798008]
  8. Brain Cogn. 2007 Nov;65(2):145-68 [PMID: 17923222]
  9. Nat Neurosci. 2007 Jul;10(7):903-7 [PMID: 17589507]
  10. Brain Res Brain Res Rev. 2001 Oct;36(2-3):96-107 [PMID: 11690606]
  11. Neuron. 2017 Jul 5;95(1):209-220.e3 [PMID: 28625487]
  12. J Neurosci. 2017 Nov 29;37(48):11572-11591 [PMID: 29066555]
  13. Neuroimage. 2017 Sep;158:308-318 [PMID: 28711735]
  14. Curr Opin Behav Sci. 2018 Apr;20:47-55 [PMID: 29457054]
  15. Nature. 2009 Apr 2;458(7238):632-5 [PMID: 19225460]
  16. J Cogn Neurosci. 2002 May 15;14(4):525-37 [PMID: 12126495]
  17. J Exp Psychol Hum Percept Perform. 2005 Jun;31(3):592-607 [PMID: 15982133]
  18. J Vis. 2019 Aug 1;19(9):1 [PMID: 31369042]
  19. J Vis. 2020 Nov 2;20(12):2 [PMID: 33141171]
  20. Behav Brain Res. 2013 Jan 1;236(1):67-77 [PMID: 22921373]
  21. J Vis. 2017 Apr 1;17(4):9 [PMID: 28437797]
  22. Curr Biol. 2013 Aug 5;23(15):1427-31 [PMID: 23871239]
  23. Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11627-11632 [PMID: 27671651]
  24. Neuroreport. 2005 Sep 8;16(13):1483-7 [PMID: 16110276]
  25. Front Psychol. 2016 May 11;7:699 [PMID: 27242612]
  26. Sci Rep. 2022 Nov 19;12(1):19952 [PMID: 36402850]
  27. Elife. 2022 Sep 09;11: [PMID: 36082940]
  28. Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):15164-9 [PMID: 12417754]
  29. Neuron. 2002 Aug 1;35(3):575-87 [PMID: 12165478]
  30. Nat Neurosci. 2003 Apr;6(4):414-20 [PMID: 12627164]
  31. J Neurosci. 2006 Dec 13;26(50):13025-36 [PMID: 17167092]
  32. Trends Neurosci. 2000 Nov;23(11):571-9 [PMID: 11074267]
  33. Psychol Res. 2007 Nov;71(6):659-66 [PMID: 16642347]
  34. Trends Cogn Sci. 2006 Sep;10(9):424-30 [PMID: 16899397]
  35. Nat Neurosci. 2008 Dec;11(12):1439-45 [PMID: 18978780]
  36. Exp Brain Res. 2002 Jan;142(1):139-50 [PMID: 11797091]
  37. Front Psychol. 2013 Jan 21;3:620 [PMID: 23346068]
  38. Neuroimage. 2019 Nov 15;202:116084 [PMID: 31400530]
  39. Science. 1992 Jan 3;255(5040):90-2 [PMID: 1553535]
  40. Neuroimage. 2015 Apr 1;109:429-37 [PMID: 25583612]
  41. Curr Opin Neurobiol. 2016 Apr;37:126-132 [PMID: 26922005]
  42. Neuroimage. 2007 Feb 1;34(3):1199-208 [PMID: 17169579]
  43. Brain Res. 2007 Jul 9;1157:167-76 [PMID: 17540349]
  44. Annu Rev Vis Sci. 2020 Sep 15;6:313-334 [PMID: 32552571]

Word Cloud

Created with Highcharts 10.0.0feedbackfovealperipheralvisionvisualhypothesisFovealcentralprocessingrepresentationstimulusstudieslinkshapestimulationretinotopiccortexsketchpaddiscussstronglyinterconnectedprovideintegratedexperienceworldaroundusRecentlysuggestedmechanismlinksperipheral-to-fovealdiffersmechanismsnovelformeddifferentcorticalregionfeedforwardfunctionalroleyetcompletelyunderstoodevidenceneuroimagingsuggestsBehaviouraltranscranialmagneticshowimpairmentdiscriminationdisruptedpostpresentationreviewaimsfindingsAccordingstorestask-relevantinformationaididentificationperipherallypresentedobjectscharacteristicssupportrulepossibleexplanationsalsopossibilitymayindependentsensorymodalityRoleCortexDiscriminatingPeripheralStimuli:SketchpadHypothesisV1

Similar Articles

Cited By