Impact of Porosity and Stiffness of 3D Printed Polycaprolactone Scaffolds on Osteogenic Differentiation of Human Mesenchymal Stromal Cells and Activation of Dendritic Cells.

Mehmet Serhat Aydin, Nora Marek, Theo Luciani, Samih Mohamed-Ahmed, Bodil Lund, Cecilie Gjerde, Kamal Mustafa, Salwa Suliman, Ahmad Rashad
Author Information
  1. Mehmet Serhat Aydin: Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway. ORCID
  2. Nora Marek: Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway.
  3. Theo Luciani: Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway.
  4. Samih Mohamed-Ahmed: Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway. ORCID
  5. Bodil Lund: Department of Dental Medicine, Karolinska Institute, Stockholm 17177, Sweden.
  6. Cecilie Gjerde: Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway.
  7. Kamal Mustafa: Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway. ORCID
  8. Salwa Suliman: Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway.
  9. Ahmad Rashad: Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway. ORCID

Abstract

Despite the potential of extrusion-based printing of thermoplastic polymers in bone tissue engineering, the inherent nonporous stiff nature of the printed filaments may elicit immune responses that influence bone regeneration. In this study, bone scaffolds made of polycaprolactone (PCL) filaments with different internal microporosity and stiffness was 3D-printed. It was achieved by combining three fabrication techniques, salt leaching and 3D printing at either low or high temperatures (LT/HT) with or without nonsolvent induced phase separation (NIPS). Printing PCL at HT resulted in stiff scaffolds (modulus of elasticity (E): 403 ± 19 MPa and strain: 6.6 ± 0.1%), while NIPS-based printing at LT produced less stiff and highly flexible scaffolds (E: 53 ± 10 MPa and strain: 435 ± 105%). Moreover, the introduction of porosity by salt leaching in the printed filaments significantly changed the mechanical properties and degradation rate of the scaffolds. Furthermore, this study aimed to show how these variations influence proliferation and osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBMSC) and the maturation and activation of human monocyte-derived dendritic cells (Mo-DC). The cytocompatibility of the printed scaffolds was confirmed by live-dead imaging, metabolic activity measurement, and the continuous proliferation of hBMSC over 14 days. While all scaffolds facilitated the expression of osteogenic markers (RUNX2 and Collagen I) from hBMSC as detected through immunofluorescence staining, the variation in porosity and stiffness notably influenced the early and late mineralization. Furthermore, the flexible LT scaffolds, with porosity induced by NIPS and salt leaching, stimulated Mo-DC to adopt a pro-inflammatory phenotype marked by a significant increase in the expression of IL1B and TNF genes, alongside decreased expression of anti-inflammatory markers, IL10 and TGF1B. Altogether, the results of the current study demonstrate the importance of tailoring porosity and stiffness of PCL scaffolds to direct their biological performance toward a more immune-mediated bone healing process.

Keywords

References

  1. J Tissue Eng Regen Med. 2012 Feb;6(2):155-62 [PMID: 21446054]
  2. Mater Sci Eng C Mater Biol Appl. 2018 Jun 1;87:78-89 [PMID: 29549952]
  3. Adv Biosyst. 2020 Nov;4(11):e2000247 [PMID: 33035411]
  4. Adv Healthc Mater. 2022 Jan;11(1):e2101415 [PMID: 34719861]
  5. Nat Commun. 2012 Apr 24;3:792 [PMID: 22531177]
  6. Transfusion. 2018 Jul;58(7):1800-1813 [PMID: 29672857]
  7. Acta Biomater. 2019 Jun;91:1-23 [PMID: 30980937]
  8. Acta Biomater. 2021 Oct 1;133:58-73 [PMID: 33882355]
  9. Acta Biomater. 2018 May;72:94-109 [PMID: 29601901]
  10. Bioact Mater. 2020 Jun 30;5(4):880-890 [PMID: 32637751]
  11. Acta Biomater. 2018 Dec;82:1-11 [PMID: 30321630]
  12. Biomaterials. 2016 Aug;98:184-91 [PMID: 27203745]
  13. Biomaterials. 2005 Sep;26(27):5474-91 [PMID: 15860204]
  14. Adv Healthc Mater. 2015 Oct 28;4(15):2238-46 [PMID: 26332611]
  15. Acta Biomater. 2016 Sep 15;42:247-257 [PMID: 27370906]
  16. Bioact Mater. 2021 Dec 25;15:82-102 [PMID: 35386347]
  17. Cell Rep. 2021 Jan 12;34(2):108609 [PMID: 33440149]
  18. ACS Macro Lett. 2018 Aug 21;7(8):976-982 [PMID: 30705783]
  19. Cell Biol Int. 2013 Jun;37(6):608-16 [PMID: 23447501]
  20. Eur Cell Mater. 2013 Jan 18;25:114-129 [PMID: 23329467]
  21. Ann Am Thorac Soc. 2013 Oct;10(5):S25-44 [PMID: 23869447]
  22. Materials (Basel). 2017 Sep 22;10(10): [PMID: 28937605]
  23. Tissue Eng. 2006 Dec;12(12):3417-29 [PMID: 17518678]
  24. Regen Biomater. 2018 Mar;5(2):115-124 [PMID: 29644093]
  25. ACS Biomater Sci Eng. 2017 Jul 10;3(7):1175-1194 [PMID: 33440508]
  26. Acta Biomater. 2018 Apr 15;71:132-147 [PMID: 29462712]
  27. Stem Cell Res Ther. 2018 Jun 19;9(1):168 [PMID: 29921311]
  28. Front Bioeng Biotechnol. 2023 Mar 29;11:1133995 [PMID: 37064239]
  29. Tissue Eng Part B Rev. 2016 Aug;22(4):298-310 [PMID: 26857350]
  30. Biomacromolecules. 2011 Apr 11;12(4):1250-8 [PMID: 21344847]
  31. Int J Oral Sci. 2023 Aug 2;15(1):31 [PMID: 37532700]
  32. Biofabrication. 2019 Jul 03;11(4):045004 [PMID: 31026858]
  33. Sci Transl Med. 2016 Sep 28;8(358):358ra127 [PMID: 27683552]
  34. Adv Healthc Mater. 2024 Mar;13(7):e2301158 [PMID: 38211963]
  35. Materials (Basel). 2021 Jul 28;14(15): [PMID: 34361418]
  36. Biotechnol Bioeng. 2018 Apr;115(4):1086-1095 [PMID: 29280498]
  37. ACS Macro Lett. 2020 Nov 17;9(11):1617-1624 [PMID: 35617063]
  38. Tissue Eng Part A. 2019 Jul;25(13-14):931-935 [PMID: 31084409]
  39. Biomed Mater. 2014 Aug;9(4):045003 [PMID: 24945873]
  40. Cytotechnology. 2016 May;68(3):355-69 [PMID: 26091616]
  41. Sci Adv. 2023 May 5;9(18):eadd6071 [PMID: 37146134]

MeSH Term

Humans
Polyesters
Tissue Scaffolds
Printing, Three-Dimensional
Porosity
Osteogenesis
Mesenchymal Stem Cells
Cell Differentiation
Dendritic Cells
Tissue Engineering
Cell Proliferation
Cells, Cultured

Chemicals

Polyesters
polycaprolactone

Word Cloud

Created with Highcharts 10.0.0scaffoldsboneleaching±porosityprintingstiffprintedfilamentsstudyPCLstiffnesssaltinducedhBMSCexpressiontissueengineeringinfluenceregeneration3DphaseseparationNIPSMPastrain:6LTflexibleFurthermoreproliferationosteogenichumancellsMo-DCmarkersCellsDespitepotentialextrusion-basedthermoplasticpolymersinherentnonporousnaturemayelicitimmuneresponsesmadepolycaprolactonedifferentinternalmicroporosity3D-printedachievedcombiningthreefabricationtechniqueseitherlowhightemperaturesLT/HTwithoutnonsolventPrintingHTresultedmoduluselasticityE:4031901%NIPS-basedproducedlesshighlyE:5310435105%Moreoverintroductionsignificantlychangedmechanicalpropertiesdegradationrateaimedshowvariationsdifferentiationmarrow-derivedmesenchymalstromalmaturationactivationmonocyte-deriveddendriticcytocompatibilityconfirmedlive-deadimagingmetabolicactivitymeasurementcontinuous14daysfacilitatedRUNX2Collagendetectedimmunofluorescencestainingvariationnotablyinfluencedearlylatemineralizationstimulatedadoptpro-inflammatoryphenotypemarkedsignificantincreaseIL1BTNFgenesalongsidedecreasedanti-inflammatoryIL10TGF1BAltogetherresultscurrentdemonstrateimportancetailoringdirectbiologicalperformancetowardimmune-mediatedhealingprocessImpactPorosityStiffnessPrintedPolycaprolactoneScaffoldsOsteogenicDifferentiationHumanMesenchymalStromalActivationDendriticBoneDegradationImmune-mediatedMicroporosityNonsolventSalt

Similar Articles

Cited By

No available data.