Synthetic Health Data: Real Ethical Promise and Peril.

Daniel Susser, Daniel S Schiff, Sara Gerke, Laura Y Cabrera, I Glenn Cohen, Megan Doerr, Jordan Harrod, Kristin Kostick-Quenet, Jasmine McNealy, Michelle N Meyer, W Nicholson Price, Jennifer K Wagner
Author Information

Abstract

Researchers and practitioners are increasingly using machine-generated synthetic data as a tool for advancing health science and practice, by expanding access to health data while-potentially-mitigating privacy and related ethical concerns around data sharing. While using synthetic data in this way holds promise, we argue that it also raises significant ethical, legal, and policy concerns, including persistent privacy and security problems, accuracy and reliability issues, worries about fairness and bias, and new regulatory challenges. The virtue of synthetic data is often understood to be its detachment from the data subjects whose measurement data is used to generate it. However, we argue that addressing the ethical issues synthetic data raises might require bringing data subjects back into the picture, finding ways that researchers and data subjects can be more meaningfully engaged in the construction and evaluation of datasets and in the creation of institutional safeguards that promote responsible use.

Keywords

References

  1. Sci Technol Human Values. 2010 May 1;35(3):330-355 [PMID: 20526462]
  2. Nat Biomed Eng. 2022 Dec;6(12):1330-1345 [PMID: 35788685]
  3. J Med Ethics. 2022 Nov;48(11):852-856 [PMID: 34426519]
  4. Sci Transl Med. 2021 Mar 24;13(586): [PMID: 33762434]
  5. Hastings Cent Rep. 2024 Sep;54(5):8-13 [PMID: 39487776]
  6. J Med Ethics. 2020 May;46(5):289-294 [PMID: 31911499]
  7. J Am Med Inform Assoc. 2021 Mar 1;28(3):596-604 [PMID: 33277896]
  8. Sci Eng Ethics. 2016 Apr;22(2):303-41 [PMID: 26002496]
  9. PLOS Digit Health. 2023 Jan 6;2(1):e0000082 [PMID: 36812604]
  10. Entropy (Basel). 2021 Sep 04;23(9): [PMID: 34573790]
  11. PLoS One. 2023 Apr 19;18(4):e0279857 [PMID: 37074995]
  12. Nat Commun. 2022 Dec 9;13(1):7609 [PMID: 36494374]
  13. Lancet. 2022 Apr 23;399(10335):1601-1602 [PMID: 35358423]
  14. Nat Commun. 2023 Aug 31;14(1):5305 [PMID: 37652934]
  15. Nat Biomed Eng. 2021 Jun;5(6):493-497 [PMID: 34131324]
  16. NPJ Digit Med. 2023 Oct 9;6(1):186 [PMID: 37813960]
  17. Nature. 2023 Apr 27;: [PMID: 37106108]
  18. J Med Syst. 2022 Nov 16;46(12):96 [PMID: 36380246]
  19. NPJ Digit Med. 2020 Apr 7;3:53 [PMID: 32285013]

Grants

  1. R01 EB027650/NIBIB NIH HHS
  2. NNF23SA0087056/Novo Nordisk Foundation
  3. 1R21EB035474-01/NIH Office of the Director and NIBIB
  4. 101057099/European Union
  5. R21 EB035474/NIBIB NIH HHS
  6. 3R01EB027650-03S1/National Institutes of Health's Office of the Director and the National Institute of Biomedical Imaging and Bioengineering
  7. 101057321/European Union

MeSH Term

Humans
Privacy
Information Dissemination
Confidentiality
Computer Security

Word Cloud

Created with Highcharts 10.0.0datasynthetichealthprivacyethicalsubjectsusingconcernsargueraisesissuesResearcherspractitionersincreasinglymachine-generatedtooladvancingsciencepracticeexpandingaccesswhile-potentially-mitigatingrelatedaroundsharingwayholdspromisealsosignificantlegalpolicyincludingpersistentsecurityproblemsaccuracyreliabilityworriesfairnessbiasnewregulatorychallengesvirtueoftenunderstooddetachmentwhosemeasurementusedgenerateHoweveraddressingmightrequirebringingbackpicturefindingwaysresearcherscanmeaningfullyengagedconstructionevaluationdatasetscreationinstitutionalsafeguardspromoteresponsibleuseSyntheticHealthData:RealEthicalPromisePerilbioethicsmachinelearningprivacy���enhancingtechnologiesresearchethics

Similar Articles

Cited By (2)