Identification and characterization of antibacterial peptides produced by 1407.

Silpa Sajan, Rupachandra Saravanan
Author Information
  1. Silpa Sajan: Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603 203, India.
  2. Rupachandra Saravanan: Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603 203, India. ORCID

Abstract


Introduction: Peptides from lactic acid bacteria provide health benefits and can inhibit the growth of pathogenic organisms. The present work aimed to isolate and characterize peptides with antibacterial activity from 1407.
Methods: Peptides were isolated and purified from 1407. The effect of various physiological parameters on the antibacterial activity of the isolated peptides was analyzed. The mode of action of the peptides on indicator organisms was observed using transmission microscopy analysis and flow cytometry analysis.
Results: Antibacterial activity and mode of action of peptides isolated from 1407 against gram-positive and gram-negative bacteria have been studied. culture exhibited maximum antibacterial activity at 40 ��C, pH 8, and 0.7% salt concentration. The cell-free supernatant (CFS) was concentrated using a 3 kDa ultrafiltration membrane and the peptide fractions (<3 kDa) were further fractionated using Sephadex G-25 gel filtration chromatography. The antibacterial activity of the eluted fractions (F1 to F4) was evaluated using flow cytometry and transmission electron microscopy. F3 fraction exhibited increased antibacterial activity than F1, F2, and F4 fractions against the indicator organisms. Cell membrane damage and leakage of cytoplasmic content of the bacterial cells treated with the antibacterial F3 fraction peptides were observed.
Conclusion: The active peptides from 1407 can be potentially used for the treatment of bacterial infections.

Keywords

References

  1. PLoS One. 2017 Oct 12;12(10):e0186415 [PMID: 29023515]
  2. Biochim Biophys Acta. 2016 May;1858(5):936-46 [PMID: 26577273]
  3. Front Microbiol. 2016 May 31;7:817 [PMID: 27303396]
  4. J Agric Food Chem. 2018 May 9;66(18):4716-4724 [PMID: 29690762]
  5. J Clin Microbiol. 2020 Feb 24;58(3): [PMID: 31915289]
  6. Can J Microbiol. 2021 Feb;67(2):119-137 [PMID: 32783775]
  7. J Biol Chem. 2009 Oct 16;284(42):28674-81 [PMID: 19692336]
  8. Biochemistry. 2010 May 18;49(19):4076-84 [PMID: 20387900]
  9. Food Funct. 2020 Nov 18;11(11):10047-10057 [PMID: 33135695]
  10. Science. 2006 Sep 15;313(5793):1636-7 [PMID: 16973881]
  11. Front Microbiol. 2019 May 21;10:1091 [PMID: 31164879]
  12. PLoS One. 2015 Oct 16;10(10):e0140434 [PMID: 26474074]
  13. Int J Microbiol. 2012;2012:806230 [PMID: 22291709]
  14. Can J Microbiol. 2020 Feb;66(2):161-168 [PMID: 31743042]
  15. J Exp Biol. 2000 Jan;203(Pt 1):51-9 [PMID: 10600673]
  16. Food Chem. 2014 Dec 15;165:216-23 [PMID: 25038669]
  17. J Chem Phys. 2004 Dec 15;121(23):11942-8 [PMID: 15634156]
  18. Lett Appl Microbiol. 2003;37(1):51-5 [PMID: 12803556]
  19. World J Microbiol Biotechnol. 2020 May 9;36(5):74 [PMID: 32388765]
  20. Braz J Microbiol. 2008 Jan;39(1):178-87 [PMID: 24031200]
  21. Microbiol Res. 2015 Jan;170:69-77 [PMID: 25267486]
  22. Appl Environ Microbiol. 2004 Apr;70(4):2271-8 [PMID: 15066822]
  23. Int J Food Microbiol. 2002 Jan 30;72(1-2):155-64 [PMID: 11843407]
  24. Antimicrob Agents Chemother. 2020 Nov 17;64(12): [PMID: 32958719]
  25. ChemMedChem. 2021 Dec 6;16(23):3513-3544 [PMID: 34596961]
  26. Mol Biol Rep. 2019 Dec;46(6):6501-6512 [PMID: 31583564]
  27. Front Neurosci. 2017 Feb 14;11:73 [PMID: 28261050]
  28. J Pharm Anal. 2016 Apr;6(2):71-79 [PMID: 29403965]
  29. Adv Biosyst. 2018 May;2(5): [PMID: 30800727]
  30. J Pept Sci. 2016 Jun;22(6):427-33 [PMID: 27197902]
  31. J Biol Chem. 2001 Jan 19;276(3):1772-9 [PMID: 11038353]
  32. Indian J Med Res. 2019 Feb;149(2):97-106 [PMID: 31219074]
  33. Antibiotics (Basel). 2020 Aug 28;9(9): [PMID: 32872235]
  34. Probiotics Antimicrob Proteins. 2009 Jan 20;1(1):67-74 [PMID: 20445810]
  35. Front Microbiol. 2014 May 26;5:241 [PMID: 24904554]
  36. Int J Food Microbiol. 2022 Mar 16;365:109539 [PMID: 35091274]
  37. Molecules. 2019 Jul 09;24(13): [PMID: 31324069]
  38. Front Pharmacol. 2018 Mar 28;9:281 [PMID: 29643807]
  39. Microorganisms. 2019 Dec 25;8(1): [PMID: 31881756]
  40. Aquat Biosyst. 2013 Jun 01;9(1):12 [PMID: 23725298]
  41. Appl Environ Microbiol. 2017 Dec 15;84(1): [PMID: 29030449]
  42. Adv Drug Deliv Rev. 2008 Mar 1;60(4-5):598-607 [PMID: 18045727]
  43. FEMS Microbiol Rev. 2021 Jan 8;45(1): [PMID: 32876664]
  44. Heliyon. 2020 Aug 21;6(8):e04715 [PMID: 32904251]
  45. PeerJ. 2021 Nov 30;9:e12586 [PMID: 34909285]
  46. J Glob Antimicrob Resist. 2020 Sep;22:263-269 [PMID: 32169681]
  47. Antonie Van Leeuwenhoek. 2004 Apr;85(3):191-8 [PMID: 15031648]
  48. J Microbiol Methods. 2019 May;160:73-83 [PMID: 30926316]

Word Cloud

Created with Highcharts 10.0.0peptidesantibacterialactivity1407usingPeptidesorganismsisolatedcytometryfractionsbacteriacanmodeactionindicatorobservedtransmissionmicroscopyanalysisflowexhibitedkDamembranefiltrationchromatographyF1F4F3fractionbacterialIntroduction:lacticacidprovidehealthbenefitsinhibitgrowthpathogenicpresentworkaimedisolatecharacterizeMethods:purifiedeffectvariousphysiologicalparametersanalyzedResults:Antibacterialgram-positivegram-negativestudiedculturemaximum40��CpH807%saltconcentrationcell-freesupernatantCFSconcentrated3ultrafiltrationpeptide<3fractionatedSephadexG-25gelelutedevaluatedelectronincreasedF2CelldamageleakagecytoplasmiccontentcellstreatedConclusion:activepotentiallyusedtreatmentinfectionsIdentificationcharacterizationproducedFlowGelLactobacillusplantarumUltrafiltration

Similar Articles

Cited By