Synapses learn to utilize stochastic pre-synaptic release for the prediction of postsynaptic dynamics.

David Kappel, Christian Tetzlaff
Author Information
  1. David Kappel: III. Physikalisches Institut - Biophysik, Georg-August Universit��t, G��ttingen, Germany. ORCID
  2. Christian Tetzlaff: III. Physikalisches Institut - Biophysik, Georg-August Universit��t, G��ttingen, Germany. ORCID

Abstract

Synapses in the brain are highly noisy, which leads to a large trial-by-trial variability. Given how costly synapses are in terms of energy consumption these high levels of noise are surprising. Here we propose that synapses use noise to represent uncertainties about the somatic activity of the postsynaptic neuron. To show this, we developed a mathematical framework, in which the synapse as a whole interacts with the soma of the postsynaptic neuron in a similar way to an agent that is situated and behaves in an uncertain, dynamic environment. This framework suggests that synapses use an implicit internal model of the somatic membrane dynamics that is being updated by a synaptic learning rule, which resembles experimentally well-established LTP/LTD mechanisms. In addition, this approach entails that a synapse utilizes its inherently noisy synaptic release to also encode its uncertainty about the state of the somatic potential. Although each synapse strives for predicting the somatic dynamics of its postsynaptic neuron, we show that the emergent dynamics of many synapses in a neuronal network resolve different learning problems such as pattern classification or closed-loop control in a dynamic environment. Hereby, synapses coordinate themselves to represent and utilize uncertainties on the network level in behaviorally ambiguous situations.

References

  1. Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3991-6 [PMID: 22357758]
  2. Front Neurosci. 2016 Jun 29;10:241 [PMID: 27445650]
  3. Neural Comput. 2010 Aug;22(8):1961-92 [PMID: 20337537]
  4. Front Psychol. 2012 May 08;3:130 [PMID: 22586414]
  5. Front Comput Neurosci. 2014 Apr 04;8:38 [PMID: 24772078]
  6. Nat Commun. 2020 Mar 25;11(1):1554 [PMID: 32214100]
  7. Nat Commun. 2019 Mar 29;10(1):1414 [PMID: 30926781]
  8. Nat Electron. 2020;3(7): [PMID: 33367204]
  9. J Neurosci. 2000 Dec 1;20(23):8812-21 [PMID: 11102489]
  10. Cell. 2017 Aug 24;170(5):986-999.e16 [PMID: 28823559]
  11. PLoS Comput Biol. 2015 Dec 21;11(12):e1004643 [PMID: 26690814]
  12. Trends Neurosci. 2010 Jun;33(6):259-66 [PMID: 20371122]
  13. Proc Natl Acad Sci U S A. 2018 Jan 2;115(1):186-191 [PMID: 29259111]
  14. Neural Comput. 2020 Nov;32(11):2085-2121 [PMID: 32946704]
  15. J Neurosci. 2013 Sep 4;33(36):14406-16 [PMID: 24005293]
  16. Sci Adv. 2021 Dec 03;7(49):eabi9027 [PMID: 34860552]
  17. Neural Comput. 2016 Sep;28(9):1859-88 [PMID: 27391680]
  18. Nanotechnology. 2013 Sep 27;24(38):384010 [PMID: 23999381]
  19. Nat Neurosci. 2002 Jul;5(7):657-64 [PMID: 12055631]
  20. Science. 2022 Jan 07;375(6576):82-86 [PMID: 34762487]
  21. Philos Trans R Soc Lond B Biol Sci. 2015 May 19;370(1668): [PMID: 25823866]
  22. Neuron. 2012 Sep 6;75(5):762-77 [PMID: 22958818]
  23. Entropy (Basel). 2012 Nov;14(11):2100-2121 [PMID: 23204829]
  24. J Neurosci. 2013 Jun 5;33(23):9565-75 [PMID: 23739954]
  25. Trends Neurosci. 2020 Jun;43(6):363-372 [PMID: 32459990]
  26. Front Comput Neurosci. 2015 Nov 10;9:138 [PMID: 26617512]
  27. Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19383-8 [PMID: 22080608]
  28. Philos Trans R Soc Lond B Biol Sci. 2014 Nov 5;369(1655): [PMID: 25267823]
  29. Neural Comput. 2022 May 19;34(6):1329-1368 [PMID: 35534010]
  30. Nat Rev Neurosci. 2010 Feb;11(2):127-38 [PMID: 20068583]
  31. Neural Comput. 2017 May;29(5):1229-1262 [PMID: 28333583]
  32. Sci Rep. 2019 Apr 30;9(1):6412 [PMID: 31040386]
  33. Sci Rep. 2018 Nov 16;8(1):16926 [PMID: 30446766]
  34. Nat Neurosci. 1999 Jan;2(1):79-87 [PMID: 10195184]
  35. Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):815-36 [PMID: 15937014]
  36. J Neurosci. 2006 Sep 20;26(38):9673-82 [PMID: 16988038]
  37. Curr Opin Neurobiol. 2023 Oct;82:102758 [PMID: 37619425]
  38. Elife. 2021 Oct 18;10: [PMID: 34661525]
  39. J Neurosci. 2002 Jun 1;22(11):4746-55 [PMID: 12040082]
  40. Front Neuroinform. 2014 Aug 14;8:70 [PMID: 25177291]
  41. Nat Neurosci. 2021 Apr;24(4):565-571 [PMID: 33707754]
  42. Neuron. 2014 Feb 5;81(3):521-8 [PMID: 24507189]
  43. Science. 1971 Jul 9;173(3992):123-6 [PMID: 4325812]
  44. Neuron. 2012 Nov 21;76(4):695-711 [PMID: 23177956]
  45. Neural Comput. 2008 Jan;20(1):118-45 [PMID: 18045003]
  46. Proc Natl Acad Sci U S A. 2016 Feb 2;113(5):E616-25 [PMID: 26787854]
  47. Behav Brain Sci. 2013 Jun;36(3):181-204 [PMID: 23663408]
  48. Front Comput Neurosci. 2020 Sep 30;14:558477 [PMID: 33117139]
  49. Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5239-44 [PMID: 15795376]
  50. Neural Comput. 1996 Apr 1;8(3):531-43 [PMID: 8868566]
  51. Annu Rev Neurosci. 2008;31:25-46 [PMID: 18275283]
  52. Neuron. 2004 Sep 30;44(1):23-30 [PMID: 15450157]
  53. Nat Neurosci. 2019 Jun;22(6):950-962 [PMID: 31036947]

MeSH Term

Synapses
Models, Neurological
Stochastic Processes
Neurons
Computational Biology
Animals
Humans
Learning
Neuronal Plasticity
Synaptic Transmission
Nerve Net

Word Cloud

Created with Highcharts 10.0.0synapsessomaticpostsynapticdynamicsneuronsynapseSynapsesnoisynoiseuserepresentuncertaintiesshowframeworkdynamicenvironmentsynapticlearningreleasenetworkutilizebrainhighlyleadslargetrial-by-trialvariabilityGivencostlytermsenergyconsumptionhighlevelssurprisingproposeactivitydevelopedmathematicalwholeinteractssomasimilarwayagentsituatedbehavesuncertainsuggestsimplicitinternalmodelmembraneupdatedruleresemblesexperimentallywell-establishedLTP/LTDmechanismsadditionapproachentailsutilizesinherentlyalsoencodeuncertaintystatepotentialAlthoughstrivespredictingemergentmanyneuronalresolvedifferentproblemspatternclassificationclosed-loopcontrolHerebycoordinatelevelbehaviorallyambiguoussituationslearnstochasticpre-synapticprediction

Similar Articles

Cited By