Juvenile hormone as a key regulator for asymmetric caste differentiation in ants.

Ruyan Li, Xueqin Dai, Jixuan Zheng, Rasmus Stenbak Larsen, Yanmei Qi, Xiafang Zhang, Joel Vizueta, Jacobus J Boomsma, Weiwei Liu, Guojie Zhang
Author Information
  1. Ruyan Li: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark. ORCID
  2. Xueqin Dai: Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China. ORCID
  3. Jixuan Zheng: Centre for Evolutionary and Organismal Biology, Women's Hospital, & Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou 310058, China.
  4. Rasmus Stenbak Larsen: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark. ORCID
  5. Yanmei Qi: Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China.
  6. Xiafang Zhang: Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China.
  7. Joel Vizueta: Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark.
  8. Jacobus J Boomsma: Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark. ORCID
  9. Weiwei Liu: Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China. ORCID
  10. Guojie Zhang: Centre for Evolutionary and Organismal Biology, Women's Hospital, & Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou 310058, China. ORCID

Abstract

Caste differentiation involves many functional traits that diverge during larval growth and metamorphosis to produce adults irreversibly adapted to reproductive division of labor. Investigating developmental differentiation is important for general biological understanding and has increasingly been explored for social phenotypes that diverge in parallel from similar genotypes. Here, we use ants to investigate the extent to which canalized worker development can be shifted toward gyne (virgin-queen) phenotypes by juvenile hormone (JH) treatment. We show that excess JH can activate gyne-biased development in workers so that wing-buds, ocelli, antennal and genital imaginal discs, flight muscles, and gyne-like fat bodies and brains emerge after pupation. However, ovary development remained unresponsive to JH treatment, indicating that JH-sensitive germline sequestration happens well before somatic differentiation. Our findings reveal important qualitative restrictions in the extent to which JH treatment can redirect larval development and that these constraints are independent of body size. Our findings corroborate that JH is a key hormone for inducing caste differentiation but show that this process can be asymmetric for higher colony-level germline somatic caste differentiation in superorganisms as defined a century ago by Wheeler. We quantified gene expression changes in response to JH treatment throughout development and identified a set of JH-sensitive genes responsible for the emergence of gyne-like somatic traits. Our study suggests that the gonadotropic role of JH in ovary maturation has shifted from the individual level in solitary insects to the colony level in an evolutionary-derived and highly polygynous superorganism like the pharaoh ant.

Keywords

References

  1. Annu Rev Entomol. 2000;45:661-708 [PMID: 10761593]
  2. Nature. 1996 Jul 11;382(6587):133-8 [PMID: 8700202]
  3. Science. 1981 Jul 17;213(4505):361-3 [PMID: 17819911]
  4. Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6608-6615 [PMID: 32152103]
  5. Genesis. 2011 Oct;49(10):753-75 [PMID: 21735540]
  6. Gene. 2018 Feb 5;642:16-25 [PMID: 29109004]
  7. J Evol Biol. 2014 Nov;27(11):2396-407 [PMID: 25226873]
  8. Curr Biol. 2024 Feb 5;34(3):505-518.e6 [PMID: 38215744]
  9. Horm Behav. 2013 Jan;63(1):1-4 [PMID: 22986338]
  10. Proc Biol Sci. 2010 Jul 7;277(1690):1953-61 [PMID: 20200029]
  11. J Exp Biol. 2012 Feb 1;215(Pt 3):454-60 [PMID: 22246254]
  12. Nature. 2022 Dec;612(7940):488-494 [PMID: 36450990]
  13. Biochem Biophys Res Commun. 2006 Jan 20;339(3):939-48 [PMID: 16325765]
  14. Z Tierpsychol. 1973 Feb;32(1):1-9 [PMID: 4791758]
  15. Nat Rev Mol Cell Biol. 2002 Jul;3(7):498-508 [PMID: 12094216]
  16. Trends Ecol Evol. 2021 Aug;36(8):671-673 [PMID: 34226080]
  17. Rouxs Arch Dev Biol. 1987 Dec;196(8):522-526 [PMID: 28305709]
  18. Cell. 2023 Sep 28;186(20):4289-4309.e23 [PMID: 37683635]
  19. J Insect Physiol. 1998 May;44(5-6):385-391 [PMID: 12770156]
  20. Annu Rev Entomol. 2019 Jan 7;64:315-333 [PMID: 30312553]
  21. Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2406999121 [PMID: 39495909]
  22. PLoS One. 2010 May 19;5(5):e10723 [PMID: 20502707]
  23. J Insect Physiol. 2000 Mar;46(3):251-258 [PMID: 12770229]
  24. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Mar;192(3):315-20 [PMID: 16283330]
  25. Nat Commun. 2017 Dec;8(1):4 [PMID: 28232746]
  26. Nat Ecol Evol. 2018 Nov;2(11):1782-1791 [PMID: 30349091]
  27. Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):11050-5 [PMID: 23754378]
  28. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3255-9 [PMID: 1059110]
  29. Science. 2008 May 30;320(5880):1213-6 [PMID: 18511689]
  30. Evol Dev. 2016 Mar-Apr;18(2):96-104 [PMID: 26994860]
  31. Curr Biol. 2013 Jun 17;23(12):1120-5 [PMID: 23746639]
  32. Arthropod Struct Dev. 2013 May;42(3):257-64 [PMID: 23459016]
  33. Development. 1995 Oct;121(10):3447-56 [PMID: 7588077]
  34. Science. 2012 Aug 17;337(6096):860-4 [PMID: 22837386]
  35. Gen Comp Endocrinol. 1991 May;82(2):172-83 [PMID: 1906823]
  36. Science. 2006 Jun 2;312(5778):1385-8 [PMID: 16741122]
  37. Curr Opin Cell Biol. 2014 Aug;29:39-45 [PMID: 24736091]
  38. Science. 2018 Jul 27;361(6400):398-402 [PMID: 30049879]
  39. Trends Ecol Evol. 2021 Aug;36(8):668-670 [PMID: 33962801]
  40. Genes Brain Behav. 2013 Apr;12(3):338-47 [PMID: 23398613]
  41. Science. 2022 Sep 2;377(6610):1092-1099 [PMID: 36048960]
  42. Curr Top Dev Biol. 2021;141:279-336 [PMID: 33602491]
  43. Trends Ecol Evol. 2021 Feb;36(2):100-103 [PMID: 33339591]
  44. Development. 1995 Dec;121(12):4149-60 [PMID: 8575315]
  45. Evolution. 1996 Jun;50(3):967-976 [PMID: 28565291]
  46. J Evol Biol. 2011 Sep;24(9):1939-48 [PMID: 21696476]
  47. Science. 2012 Jan 6;335(6064):79-82 [PMID: 22223805]
  48. Curr Opin Insect Sci. 2015 Oct;11:39-46 [PMID: 28285758]
  49. Q Rev Biol. 2005 Sep;80(3):287-316 [PMID: 16250465]
  50. BMC Biol. 2018 Aug 13;16(1):89 [PMID: 30103762]
  51. Nat Ecol Evol. 2022 Aug;6(8):1191-1204 [PMID: 35711063]
  52. Biol Rev Camb Philos Soc. 2018 Feb;93(1):28-54 [PMID: 28508537]
  53. J Insect Physiol. 2012 Dec;58(12):1643-9 [PMID: 23073393]
  54. Evol Dev. 2006 May-Jun;8(3):266-72 [PMID: 16686637]
  55. Science. 2002 Jul 12;297(5579):249-52 [PMID: 12114626]
  56. R Soc Open Sci. 2023 Dec 20;10(12):231471 [PMID: 38126067]
  57. Evodevo. 2015 Dec 01;6:36 [PMID: 26629324]
  58. Philos Trans R Soc Lond B Biol Sci. 2010 Feb 27;365(1540):617-30 [PMID: 20083637]
  59. J Insect Sci. 2003;3:2 [PMID: 15841219]
  60. Nature. 1979 Nov 1;282(5734):92-4 [PMID: 503195]
  61. Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7128-33 [PMID: 17438290]
  62. Cell. 2021 Nov 11;184(23):5807-5823.e14 [PMID: 34739833]
  63. Annu Rev Entomol. 2013;58:181-204 [PMID: 22994547]
  64. Trends Ecol Evol. 2017 Nov;32(11):861-872 [PMID: 28899581]
  65. Nature. 2018 Oct;562(7728):574-577 [PMID: 30305737]
  66. Braz J Med Biol Res. 2000 Feb;33(2):157-77 [PMID: 10657056]
  67. Curr Top Dev Biol. 1998;40:45-77 [PMID: 9673848]
  68. Am Nat. 2012 Sep;180(3):328-41 [PMID: 22854076]
  69. Dev Biol. 2015 May 15;401(2):299-309 [PMID: 25797154]
  70. Biochem Biophys Res Commun. 2017 Jan 22;482(4):814-820 [PMID: 27888110]
  71. PeerJ. 2019 Mar 1;7:e6512 [PMID: 30842903]
  72. Biol Lett. 2018 Jan;14(1): [PMID: 29343564]
  73. Cell. 2021 May 27;184(11):2825-2842.e22 [PMID: 33932341]
  74. Dev Dyn. 2011 Jan;240(1):75-85 [PMID: 21104743]
  75. J Exp Biol. 2016 Jan;219(Pt 1):8-11 [PMID: 26739685]
  76. Nat Ecol Evol. 2022 Nov;6(11):1753-1765 [PMID: 36192540]
  77. J Neurosci. 2014 Sep 24;34(39):13195-207 [PMID: 25253864]
  78. Q Rev Biol. 1953 Jun;28(2):136-56 [PMID: 13074471]
  79. Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1182-6 [PMID: 22232688]
  80. Proc Biol Sci. 2016 Jan 13;283(1822): [PMID: 26763704]
  81. J Comp Physiol B. 2011 Dec;181(8):991-9 [PMID: 21618034]
  82. J Exp Biol. 2024 Jun 15;227(12): [PMID: 38779857]
  83. J Exp Biol. 2017 Jan 1;220(Pt 1):53-62 [PMID: 28057828]
  84. Curr Opin Insect Sci. 2019 Feb;31:43-48 [PMID: 31109672]
  85. Sci Adv. 2020 Sep 16;6(38): [PMID: 32938672]
  86. Arch Insect Biochem Physiol. 1997;35(4):559-83 [PMID: 9210289]
  87. J Insect Physiol. 1974 Jul;20(7):1351-65 [PMID: 4850908]
  88. Genetics. 2019 Nov;213(3):897-909 [PMID: 31492805]
  89. Cell. 2015 Nov 5;163(4):907-19 [PMID: 26544939]
  90. Annu Rev Entomol. 2013;58:497-516 [PMID: 23072462]
  91. Proc Natl Acad Sci U S A. 2005 Mar 1;102(9):3330-5 [PMID: 15728373]

Grants

  1. 32388102/MOST | National Natural Science Foundation of China (NSFC)
  2. 32170631/MOST | National Natural Science Foundation of China (NSFC)
  3. 202301AT070291/Yunnan Provincial Science and Technology Department
  4. 25900/Villum Fonden (Villum Foundation)

MeSH Term

Animals
Ants
Juvenile Hormones
Larva
Female
Metamorphosis, Biological
Ovary
Phenotype
Male
Gene Expression Regulation, Developmental

Chemicals

Juvenile Hormones

Word Cloud

Created with Highcharts 10.0.0differentiationJHdevelopmentcanhormonetreatmentcastesomatictraitsdivergelarvalimportantphenotypesantsextentshiftedjuvenileshowgyne-likeovaryJH-sensitivegermlinefindingskeyasymmetriclevelsuperorganismCasteinvolvesmanyfunctionalgrowthmetamorphosisproduceadultsirreversiblyadaptedreproductivedivisionlaborInvestigatingdevelopmentalgeneralbiologicalunderstandingincreasinglyexploredsocialparallelsimilargenotypesuseinvestigatecanalizedworkertowardgynevirgin-queenexcessactivategyne-biasedworkerswing-budsocelliantennalgenitalimaginaldiscsflightmusclesfatbodiesbrainsemergepupationHoweverremainedunresponsiveindicatingsequestrationhappenswellrevealqualitativerestrictionsredirectconstraintsindependentbodysizecorroborateinducingprocesshighercolony-levelsuperorganismsdefinedcenturyagoWheelerquantifiedgeneexpressionchangesresponsethroughoutidentifiedsetgenesresponsibleemergencestudysuggestsgonadotropicrolematurationindividualsolitaryinsectscolonyevolutionary-derivedhighlypolygynouslikepharaohantJuvenileregulatorcanalizationmodularity

Similar Articles

Cited By