MoaB2, a newly identified transcription factor, binds to �� in .

Barbora Brezovsk��, Subhash Narasimhan, Michaela ��ikov��, Hana ��anderov��, Tom���� Kova��, Nabajyoti Borah, Mahmoud Shoman, Debora Posp����ilov��, Viola Va��kov�� Hausnerov��, D��vid Tu��in��in, Martin ��ern��, Jan Kom��rek, Martina Janou��kov��, Milada Kambov��, Petr Halada, Alena K��enkov��, Martin Hub��lek, M��ria Trundov��, Jan Dohn��lek, Jarmila Hnilicov��, Luk���� ����dek, Libor Kr��sn��
Author Information
  1. Barbora Brezovsk��: Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia. ORCID
  2. Subhash Narasimhan: Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia.
  3. Michaela ��ikov��: Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia.
  4. Hana ��anderov��: Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia.
  5. Tom���� Kova��: Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Vestec, Czechia.
  6. Nabajyoti Borah: Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia.
  7. Mahmoud Shoman: Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia.
  8. Debora Posp����ilov��: Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia.
  9. Viola Va��kov�� Hausnerov��: Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia.
  10. D��vid Tu��in��in: Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia.
  11. Martin ��ern��: Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia.
  12. Jan Kom��rek: Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czechia.
  13. Martina Janou��kov��: Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia.
  14. Milada Kambov��: Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia.
  15. Petr Halada: Institute of Microbiology of the Czech Academy of Sciences, Centre BIOCEV, Vestec, Czechia.
  16. Alena K��enkov��: Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia.
  17. Martin Hub��lek: Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia.
  18. M��ria Trundov��: Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Vestec, Czechia.
  19. Jan Dohn��lek: Institute of Biotechnology of the Czech Academy of Sciences, Centre BIOCEV, Vestec, Czechia.
  20. Jarmila Hnilicov��: Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia. ORCID
  21. Luk���� ����dek: Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czechia. ORCID
  22. Libor Kr��sn��: Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia. ORCID

Abstract

In mycobacteria, �� is the primary sigma factor. This essential protein binds to RNA polymerase (RNAP) and mediates transcription initiation of housekeeping genes. Our knowledge about this factor in mycobacteria is limited. Here, we performed an unbiased search for interacting partners of ��. The search revealed a number of proteins; prominent among them was MoaB2. The ��-MoaB2 interaction was validated and characterized by several approaches, revealing that it likely does not require RNAP and is specific, as alternative �� factors (, closely related ��) do not interact with MoaB2. The structure of MoaB2 was solved by X-ray crystallography. By immunoprecipitation and nuclear magnetic resonance, the unique, unstructured N-terminal domain of �� was identified to play a role in the ��-MoaB2 interaction. Functional experiments then showed that MoaB2 inhibits ��-dependent (but not ��-dependent) transcription and may increase the stability of �� in the cell. We propose that MoaB2, by sequestering ��, has a potential to modulate gene expression. In summary, this study has uncovered a new binding partner of mycobacterial ��, paving the way for future investigation of this phenomenon.IMPORTANCEMycobacteria cause serious human diseases such as tuberculosis and leprosy. The mycobacterial transcription machinery is unique, containing transcription factors such as RbpA, CarD, and the RNA polymerase (RNAP) core-interacting small RNA Ms1. Here, we extend our knowledge of the mycobacterial transcription apparatus by identifying MoaB2 as an interacting partner of ��, the primary sigma factor, and characterize its effects on transcription and �� stability. This information expands our knowledge of interacting partners of subunits of mycobacterial RNAP, providing opportunities for future development of antimycobacterial compounds.

Keywords

References

  1. Structure. 2001 Apr 4;9(4):299-310 [PMID: 11525167]
  2. Nat Microbiol. 2017 Feb 06;2:16274 [PMID: 28165460]
  3. J Biol Chem. 2004 Oct 1;279(40):42139-46 [PMID: 15269205]
  4. Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):22-5 [PMID: 20057045]
  5. PLoS One. 2014 Jan 20;9(1):e86030 [PMID: 24465852]
  6. J Bacteriol. 2010 Mar;192(6):1498-510 [PMID: 20061478]
  7. Microbiology (Reading). 2010 Mar;156(Pt 3):873-883 [PMID: 19926651]
  8. Nat Commun. 2020 Dec 18;11(1):6419 [PMID: 33339823]
  9. FEMS Microbiol Rev. 2023 Nov 1;47(6): [PMID: 36549665]
  10. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42 [PMID: 21460441]
  11. Nat Commun. 2016 Mar 31;7:11062 [PMID: 27029515]
  12. Trends Microbiol. 2001 Oct;9(10):472-4 [PMID: 11597444]
  13. J Bacteriol. 1999 Jan;181(2):469-76 [PMID: 9882660]
  14. Nucleic Acids Res. 2018 Nov 2;46(19):10106-10118 [PMID: 30102406]
  15. Biophys J. 2000 Mar;78(3):1606-19 [PMID: 10692345]
  16. Bioinformatics. 2015 Apr 15;31(8):1325-7 [PMID: 25505092]
  17. Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67 [PMID: 21460454]
  18. Biochemistry. 1989 Jul 25;28(15):6150-6 [PMID: 2675964]
  19. Sci Rep. 2020 Nov 25;10(1):20560 [PMID: 33239692]
  20. J Microbiol. 2022 Sep;60(9):935-947 [PMID: 35913593]
  21. J Bacteriol. 1999 Jun;181(12):3768-76 [PMID: 10368152]
  22. Nature. 2004 Aug 12;430(7001):803-6 [PMID: 15306815]
  23. Mol Microbiol. 2002 Feb;43(3):717-31 [PMID: 11929527]
  24. Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12619-24 [PMID: 23858468]
  25. Tuberculosis (Edinb). 2011 Jan;91(1):8-13 [PMID: 20980200]
  26. mBio. 2019 May 21;10(3): [PMID: 31113892]
  27. J Magn Reson. 2010 Aug;205(2):286-92 [PMID: 20547466]
  28. Mol Microbiol. 1999 Jan;31(2):715-24 [PMID: 10027986]
  29. EMBO J. 2004 Nov 10;23(22):4473-83 [PMID: 15496987]
  30. J Bacteriol. 2010 May;192(10):2491-502 [PMID: 20233930]
  31. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Dec 1;65(Pt 12):1200-3 [PMID: 20054111]
  32. J Struct Biol. 2010 Oct;172(1):34-44 [PMID: 20600952]
  33. Chem Biol. 2008 Oct 20;15(10):1091-103 [PMID: 18940669]
  34. Dis Markers. 2022 May 20;2022:7475704 [PMID: 35634445]
  35. Cell. 2001 Mar 23;104(6):901-12 [PMID: 11290327]
  36. Nucleic Acids Res. 2016 Sep 6;44(15):7304-13 [PMID: 27342278]
  37. J Bacteriol. 2019 Jan 28;201(4): [PMID: 30478083]
  38. Cell Mol Life Sci. 2016 Jan;73(2):393-408 [PMID: 26216398]
  39. Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19772-7 [PMID: 24218560]
  40. Nucleic Acids Res. 2014;42(16):10399-408 [PMID: 25122744]
  41. J Bacteriol. 2008 Dec;190(23):7859-63 [PMID: 18805974]
  42. Nucleic Acids Res. 2012 Aug;40(14):6547-57 [PMID: 22570422]
  43. PLoS One. 2011 May 06;6(5):e19235 [PMID: 21573101]
  44. FEMS Microbiol Rev. 2006 Nov;30(6):926-41 [PMID: 17064287]
  45. Trends Microbiol. 2005 Nov;13(11):505-9 [PMID: 16140533]
  46. Nat Commun. 2023 Jan 30;14(1):484 [PMID: 36717560]
  47. Gene. 2014 Jan 1;533(1):374-8 [PMID: 24100088]
  48. Eur Biophys J. 2023 Jul;52(4-5):233-266 [PMID: 36792822]
  49. PLoS One. 2011 Mar 22;6(3):e18175 [PMID: 21445360]
  50. J Mol Biol. 2001 Sep 14;312(2):405-18 [PMID: 11554796]
  51. J Biol Chem. 2017 Jul 14;292(28):11610-11617 [PMID: 28539362]
  52. Annu Rev Microbiol. 2007;61:215-36 [PMID: 18035607]
  53. Mol Cell. 2017 Apr 20;66(2):169-179.e8 [PMID: 28392175]
  54. Nat Commun. 2015 Feb 25;6:6267 [PMID: 25711368]
  55. Nucleic Acids Res. 2024 May 8;52(8):4604-4626 [PMID: 38348908]
  56. J Biomol NMR. 1995 Nov;6(3):277-93 [PMID: 8520220]
  57. Mol Microbiol. 1998 Jul;29(2):617-28 [PMID: 9720877]
  58. EMBO J. 1990 Nov;9(11):3733-42 [PMID: 2209559]
  59. Methods Mol Biol. 2008;435:203-15 [PMID: 18370078]
  60. Protein Sci. 2018 Jan;27(1):112-128 [PMID: 28836357]
  61. Biochemistry. 1989 Mar 21;28(6):2387-91 [PMID: 2730871]
  62. J Mol Biol. 2007 Sep 21;372(3):649-59 [PMID: 17681541]
  63. Microbiologyopen. 2015 Dec;4(6):896-916 [PMID: 26434659]
  64. Biochemistry. 2008 Jan 22;47(3):949-56 [PMID: 18154309]
  65. Tuberculosis (Edinb). 2015 Mar;95(2):142-8 [PMID: 25613812]
  66. G3 (Bethesda). 2018 May 31;8(6):2079-2089 [PMID: 29686109]
  67. J Mol Biol. 1983 Jun 5;166(4):557-80 [PMID: 6345791]
  68. J Mol Biol. 2010 Jan 29;395(4):671-85 [PMID: 19895820]
  69. Res Microbiol. 2013 Sep;164(7):689-94 [PMID: 23680484]
  70. Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 [PMID: 20383002]
  71. Nucleic Acids Res. 2011 Apr;39(8):3418-26 [PMID: 21193488]
  72. J Biol Chem. 2023 Mar;299(3):102933 [PMID: 36690275]
  73. Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):81-6 [PMID: 15613487]
  74. Mol Microbiol. 2019 Feb;111(2):354-372 [PMID: 30427073]
  75. Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7171-6 [PMID: 26040003]
  76. Biomolecules. 2015 Jun 26;5(3):1245-65 [PMID: 26131973]
  77. J Bacteriol. 2011 Jan;193(1):98-106 [PMID: 20971904]
  78. J Exp Med. 2003 Sep 1;198(5):693-704 [PMID: 12953091]
  79. Nucleic Acids Res. 2014 Oct;42(18):11763-76 [PMID: 25217589]
  80. Nat Commun. 2017 Jul 13;8:16072 [PMID: 28703128]
  81. Methods. 2011 May;54(1):39-55 [PMID: 21256217]
  82. Nucleic Acids Res. 2022 Jul 5;50(W1):W210-W215 [PMID: 35610055]
  83. Mol Microbiol. 1990 Nov;4(11):1911-9 [PMID: 2082148]
  84. Nucleic Acids Res. 2022 Jan 7;50(D1):D543-D552 [PMID: 34723319]
  85. J Bacteriol. 2007 May;189(9):3489-95 [PMID: 17351046]
  86. Front Microbiol. 2022 May 11;13:848536 [PMID: 35633709]
  87. Nucleic Acids Res. 2020 Jan 8;48(D1):D1145-D1152 [PMID: 31686107]
  88. Crit Rev Microbiol. 2018 Aug;44(4):455-464 [PMID: 29334314]
  89. Environ Microbiol. 2020 Jun;22(6):2007-2026 [PMID: 32239579]
  90. J Bacteriol. 2009 Apr;191(8):2888-93 [PMID: 19218386]
  91. Mol Microbiol. 1998 Jun;28(6):1187-97 [PMID: 9680208]
  92. Antimicrob Agents Chemother. 2017 Nov 22;61(12): [PMID: 28993339]
  93. Nat Methods. 2007 Feb;4(2):147-52 [PMID: 17179933]
  94. J Infect Public Health. 2020 Sep;13(9):1255-1264 [PMID: 32674978]
  95. Elife. 2017 Jan 09;6: [PMID: 28067618]
  96. J Biol Chem. 2006 Jul 7;281(27):18343-50 [PMID: 16636046]
  97. Sci Rep. 2017 Mar 06;7:43858 [PMID: 28262820]
  98. Res Microbiol. 2009 Nov;160(9):667-76 [PMID: 19765651]
  99. Curr Opin Struct Biol. 2001 Apr;11(2):155-62 [PMID: 11297923]
  100. Microorganisms. 2021 Jan 05;9(1): [PMID: 33466511]
  101. Anal Biochem. 2003 Sep 1;320(1):104-24 [PMID: 12895474]
  102. Methods Enzymol. 2015;562:109-33 [PMID: 26412649]

Grants

  1. 19-12956S/Czech Science Foundation
  2. 22-12023S/Czech Science Foundation
  3. 23-05622S/Czech Science Foundation
  4. LX22NPO5103/MEYS, Funded by the European Union-Next Generation EU
  5. RVO: 86652036/Czech Academy of Sciences

MeSH Term

Mycobacterium smegmatis
Sigma Factor
Bacterial Proteins
Gene Expression Regulation, Bacterial
Transcription Factors
Protein Binding
DNA-Directed RNA Polymerases
Crystallography, X-Ray
Transcription, Genetic

Chemicals

Sigma Factor
Bacterial Proteins
Transcription Factors
DNA-Directed RNA Polymerases

Word Cloud

Created with Highcharts 10.0.0��transcriptionMoaB2factorRNARNAPmycobacterialmycobacteriapolymeraseknowledgeinteractingprimarysigmabindssearchpartners��-MoaB2interactionfactorsuniqueidentified��-dependentstabilitypartnerfutureessentialproteinmediatesinitiationhousekeepinggeneslimitedperformedunbiasedrevealednumberproteinsprominentamongvalidatedcharacterizedseveralapproachesrevealinglikelyrequirespecificalternativecloselyrelatedinteractstructuresolvedX-raycrystallographyimmunoprecipitationnuclearmagneticresonanceunstructuredN-terminaldomainplayroleFunctionalexperimentsshowedinhibitsmayincreasecellproposesequesteringpotentialmodulategeneexpressionsummarystudyuncoverednewbindingpavingwayinvestigationphenomenonIMPORTANCEMycobacteriacauseserioushumandiseasestuberculosisleprosymachinerycontainingRbpACarDcore-interactingsmallMs1extendapparatusidentifyingcharacterizeeffectsinformationexpandssubunitsprovidingopportunitiesdevelopmentantimycobacterialcompoundsnewly��A

Similar Articles

Cited By (1)