Neonatal Colonization With Antibiotic-Resistant Pathogens in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis.

Anne-Lise Beaumont, Elsa Kermorvant-Duchemin, S��bastien Breurec, Bich-Tram Huynh
Author Information
  1. Anne-Lise Beaumont: Anti-Infective Evasion and Pharmacoepidemiology Team, Center for Epidemiology and Population Health, Universit�� Paris-Saclay, UVSQ, INSERM, Montigny-le-Bretonneux, France.
  2. Elsa Kermorvant-Duchemin: Department of Neonatal Medicine, AP-HP, H��pital Necker-Enfants Malades, Universit�� Paris Cit��, Paris, France.
  3. S��bastien Breurec: Clinical Microbiology Group, Institut Pasteur of Guadeloupe, Les Abymes, France.
  4. Bich-Tram Huynh: Anti-Infective Evasion and Pharmacoepidemiology Team, Center for Epidemiology and Population Health, Universit�� Paris-Saclay, UVSQ, INSERM, Montigny-le-Bretonneux, France.

Abstract

Importance: In low- and middle-income countries (LMICs), neonatal bacterial infections are mainly caused by Enterobacterales species and Staphylococcus aureus, which are also the leading causes of mortality directly attributable to antimicrobial resistance. As bacterial colonization often precedes infection, better knowledge of colonization is crucial to prevent antibiotic-resistant neonatal sepsis.
Objective: To synthesize current evidence on the prevalence of and factors associated with colonization with third-generation cephalosporin-resistant Enterobacterales (3GCRE), carbapenem-resistant Enterobacterales (CRE), and methicillin-resistant S aureus (MRSA) during the first 3 months of life in LMICs.
Data Sources: PubMed, Scopus, Web of Science, and the World Health Organization Global Index Medicus were searched for articles published from January 1, 2000, through July 29, 2024.
Study Selection: Included studies were conducted in LMICs and reported prevalence rates or factors associated with colonization with 3GCRE, CRE, or MRSA in neonates and infants up to 3 months of age. Outbreak reports were excluded.
Data Extraction and Synthesis: Data extraction and risk-of-bias assessment using a Joanna Briggs Institute tool were performed by 2 independent reviewers. Pooled prevalence for each pathogen was computed using a random-effects model. Reporting followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline.
Main Outcomes and Measures: Prevalence of and factors associated with 3GCRE, CRE, and MRSA colonization.
Results: Of the 3147 articles identified in the search, 67 studies (51 for 3GCRE and CRE and 16 for MRSA) including 17���152 individuals were eligible. The pooled prevalence of 3GCRE colonization was 30.2% (95% CI, 21.4%-40.7%; ��2���=���1.48; I2���=���95.1%), varying from 18.2% (95% CI, 10.8%-29.1%) in nonhospitalized individuals to 48.2% (95% CI, 36.4%-60.2%) in hospitalized individuals. The prevalence of CRE colonization was 2.6% (95% CI, 0.7%-8.8%; ��2���=���7.79; I2���=���95.6%), while it was 2.7% (95% CI, 1.0%-6.7%; ��2���=���2.58; I2���=���93.5%) for MRSA. Increased risk of colonization with 3GCRE was associated with hospital birth (odds ratio [OR], 1.87; 95% CI, 1.33-2.64), neonatal antibiotic use (OR, 2.96; 95% CI, 1.43-6.11), and prolonged rupture of membranes (OR, 3.86; 95% CI, 2.19-6.84).
Conclusions and Relevance: In this systematic review and meta-analysis of antibiotic-resistant pathogen carriage in individuals aged 0 to 3 months, the pooled prevalence was substantial despite a limited exposure period. Although high heterogeneity between studies limited extrapolation of results, the findings highlight the need for further investigation to identify transmission routes and to design targeted and effective preventive measures.

References

  1. Int J Health Policy Manag. 2014 Aug 13;3(3):123-8 [PMID: 25197676]
  2. PLoS One. 2021 Jun 30;16(6):e0251810 [PMID: 34191805]
  3. Sci Transl Med. 2016 Jun 15;8(343):343ra81 [PMID: 27306663]
  4. Microbiol Res. 2023 Jan;266:127249 [PMID: 36356348]
  5. EClinicalMedicine. 2024 Feb 25;69:102463 [PMID: 38426071]
  6. Lancet Microbe. 2024 Feb;5(2):e131-e141 [PMID: 38218193]
  7. Microorganisms. 2021 Dec 17;9(12): [PMID: 34946217]
  8. J Antimicrob Chemother. 2021 Jan 1;76(1):22-29 [PMID: 33305801]
  9. Stat Med. 2002 Jun 15;21(11):1539-58 [PMID: 12111919]
  10. Antimicrob Resist Infect Control. 2019 May 20;8:79 [PMID: 31139362]
  11. Front Med (Lausanne). 2020 Apr 24;7:127 [PMID: 32391366]
  12. Front Microbiol. 2022 Jun 30;13:923273 [PMID: 35847070]
  13. BMC Microbiol. 2022 Jul 12;22(1):177 [PMID: 35820815]
  14. Lancet. 2021 Sep 4;398(10303):870-905 [PMID: 34416195]
  15. PLoS One. 2020 Nov 6;15(11):e0241776 [PMID: 33156820]
  16. Front Cell Infect Microbiol. 2024 Feb 08;14:1341161 [PMID: 38390622]
  17. Pediatrics. 2012 May;129(5):e1252-9 [PMID: 22473373]
  18. J Hosp Infect. 2019 Oct;103(2):151-155 [PMID: 30995491]
  19. Children (Basel). 2023 Jan 19;10(2): [PMID: 36832316]
  20. BMC Res Notes. 2014 May 03;7:279 [PMID: 24886506]
  21. J Infect. 2019 Aug;79(2):115-122 [PMID: 31125639]
  22. Front Cell Infect Microbiol. 2024 Jan 19;13:1322874 [PMID: 38314094]
  23. Infect Drug Resist. 2022 May 09;15:2445-2458 [PMID: 35586558]
  24. Lancet. 2022 Feb 12;399(10325):629-655 [PMID: 35065702]
  25. Int J Med Microbiol. 2018 Oct;308(7):803-811 [PMID: 29980372]
  26. Gut Microbes. 2024 Jan-Dec;16(1):2309681 [PMID: 38300753]
  27. Clin Infect Dis. 2019 Aug 16;69(5):751-759 [PMID: 30830952]
  28. Infect Control Hosp Epidemiol. 2018 Nov;39(11):1381-1383 [PMID: 30157988]
  29. Microb Pathog. 2022 Oct;171:105743 [PMID: 36044936]
  30. Antimicrob Resist Infect Control. 2021 Apr 30;10(1):72 [PMID: 33931120]
  31. Antimicrob Resist Infect Control. 2021 Aug 30;10(1):128 [PMID: 34462014]
  32. Open Forum Infect Dis. 2020 Mar 28;7(4):ofaa109 [PMID: 32373647]
  33. Infect Dis Ther. 2021 Dec;10(4):2157-2175 [PMID: 34476772]
  34. Clin Microbiol Infect. 2014 Jun;20(6):O390-6 [PMID: 24118578]
  35. Open Forum Infect Dis. 2024 Jun 03;11(6):ofae307 [PMID: 38938894]
  36. BMC Med Res Methodol. 2020 Apr 26;20(1):96 [PMID: 32336279]
  37. Nature. 2012 May 09;486(7402):222-7 [PMID: 22699611]
  38. Lancet Child Adolesc Health. 2022 Feb;6(2):106-115 [PMID: 34800370]
  39. Infect Drug Resist. 2022 Mar 09;15:933-946 [PMID: 35299860]
  40. Lancet Infect Dis. 2019 Nov;19(11):1219-1234 [PMID: 31522858]
  41. Health Sci Rep. 2020 Jul 27;3(3):e178 [PMID: 32728636]
  42. Antimicrob Resist Infect Control. 2020 May 6;9(1):58 [PMID: 32375857]
  43. Braz J Infect Dis. 2003 Dec;7(6):381-6 [PMID: 14636477]
  44. Clin Microbiol Infect. 2015 Sep;21(9):842.e1-842.e10 [PMID: 26003281]
  45. Braz J Infect Dis. 2016 Mar-Apr;20(2):134-40 [PMID: 26867474]
  46. J Hosp Infect. 2005 Sep;61(1):68-74 [PMID: 15953660]
  47. Nat Commun. 2018 Sep 24;9(1):3891 [PMID: 30250208]
  48. J Trop Pediatr. 2010 Apr;56(2):90-6 [PMID: 19608665]
  49. Pediatr Neonatol. 2021 Mar;62(2):129-137 [PMID: 33218933]
  50. Acta Paediatr. 2009 Feb;98(2):229-38 [PMID: 19143664]
  51. Infect Drug Resist. 2018 Apr 24;11:555-565 [PMID: 29731644]
  52. Am J Infect Control. 2019 Jan;47(1):105-108 [PMID: 30220617]
  53. Rev Invest Clin. 2015 Sep-Oct;67(5):313-7 [PMID: 26696335]
  54. BMC Microbiol. 2013 Jun 17;13:136 [PMID: 23773627]
  55. Syst Rev. 2022 Nov 15;11(1):240 [PMID: 36380387]
  56. J Infect Dev Ctries. 2017 Jul 31;11(7):536-542 [PMID: 31071062]
  57. Int J Infect Dis. 2024 Jun;143:107035 [PMID: 38561043]
  58. Eur J Clin Microbiol Infect Dis. 2023 Mar;42(3):229-254 [PMID: 36680641]
  59. Am J Infect Control. 2018 Jun;46(6):e31-e35 [PMID: 29803234]
  60. Open Forum Infect Dis. 2021 Oct 17;8(11):ofab531 [PMID: 34805441]
  61. Arch Gynecol Obstet. 2021 Feb;303(2):363-379 [PMID: 33386957]
  62. PLoS One. 2020 Feb 13;15(2):e0211845 [PMID: 32053585]
  63. Am J Infect Control. 2024 Nov;52(11):1273-1282 [PMID: 38876168]
  64. Pediatr Infect Dis J. 2016 Aug;35(8):856-61 [PMID: 27124686]
  65. Pak J Med Sci. 2024 Jan-Feb;40(1Part-I):84-88 [PMID: 38196494]
  66. Antimicrob Resist Infect Control. 2023 Feb 22;12(1):14 [PMID: 36814315]
  67. Lancet Infect Dis. 2005 Dec;5(12):751-62 [PMID: 16310147]
  68. PLoS Med. 2021 Sep 28;18(9):e1003681 [PMID: 34582450]
  69. PLoS One. 2013 Oct 11;8(10):e76597 [PMID: 24146896]
  70. PLoS One. 2012;7(12):e51981 [PMID: 23284838]
  71. JAMA. 2006 Feb 8;295(6):676-80 [PMID: 16467236]
  72. Zhongguo Dang Dai Er Ke Za Zhi. 2014 Oct;16(10):970-4 [PMID: 25344173]
  73. Arch Pediatr. 2006 Nov;13(11):1391-6 [PMID: 16934963]
  74. Trans R Soc Trop Med Hyg. 2023 Jul 4;117(7):528-535 [PMID: 36942836]
  75. Pediatr Infect Dis J. 2014 Oct;33(10):e252-9 [PMID: 24892848]
  76. BMC Microbiol. 2024 Apr 23;24(1):135 [PMID: 38654237]
  77. Infect Drug Resist. 2021 Sep 23;14:3907-3917 [PMID: 34588786]
  78. J Infect Dev Ctries. 2019 Sep 30;13(9):810-816 [PMID: 32074090]
  79. Pediatrics. 2014 Apr;133(4):e1015-23 [PMID: 24616358]
  80. Commun Med (Lond). 2023 Jun 3;3(1):79 [PMID: 37270610]
  81. Res Synth Methods. 2019 Mar;10(1):83-98 [PMID: 30067315]
  82. Front Cell Infect Microbiol. 2022 Aug 25;12:892126 [PMID: 36093198]
  83. Nat Commun. 2022 Dec 1;13(1):7417 [PMID: 36456554]
  84. Antimicrob Resist Infect Control. 2017 Jan 11;6:10 [PMID: 28096978]
  85. Braz J Infect Dis. 2014 Jan-Feb;18(1):42-7 [PMID: 24076111]
  86. Pediatr Infect Dis J. 2024 Mar 1;43(3):263-270 [PMID: 38381956]
  87. PLoS One. 2016 Aug 30;11(8):e0161685 [PMID: 27574974]
  88. PLoS One. 2018 Mar 1;13(3):e0193325 [PMID: 29494706]
  89. Lancet Glob Health. 2020 Jul;8(7):e909-e919 [PMID: 32562647]
  90. J Antimicrob Chemother. 2014 Aug;69(8):2230-7 [PMID: 24729603]
  91. Diagn Microbiol Infect Dis. 2013 Oct;77(2):158-9 [PMID: 23891225]
  92. Antibiotics (Basel). 2023 Feb 01;12(2): [PMID: 36830195]
  93. J Infect Dev Ctries. 2020 Jul 31;14(7):765-771 [PMID: 32794468]

MeSH Term

Humans
Infant
Infant, Newborn
Anti-Bacterial Agents
Developing Countries
Methicillin-Resistant Staphylococcus aureus
Neonatal Sepsis
Prevalence
Staphylococcal Infections

Chemicals

Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0colonization95%CIprevalence3GCRECREMRSA12associated3individuals2%LMICsneonatalEnterobacteralesfactorsmonthsstudies7%bacterialaureusantibiotic-resistantDataarticlesusingpathogenReportingSystematicpooled48I2���=���951%6%0ORlimitedImportance:low-middle-incomecountriesinfectionsmainlycausedspeciesStaphylococcusalsoleadingcausesmortalitydirectlyattributableantimicrobialresistanceoftenprecedesinfectionbetterknowledgecrucialpreventsepsisObjective:synthesizecurrentevidencethird-generationcephalosporin-resistantcarbapenem-resistantmethicillin-resistantSfirstlifeSources:PubMedScopusWebScienceWorldHealthOrganizationGlobalIndexMedicussearchedpublishedJanuary2000July292024StudySelection:IncludedconductedreportedratesneonatesinfantsageOutbreakreportsexcludedExtractionSynthesis:Dataextractionrisk-of-biasassessmentJoannaBriggsInstitutetoolperformedindependentreviewersPooledcomputedrandom-effectsmodelfollowedPreferredItemsReviewsMeta-AnalysesguidelineMainOutcomesMeasures:PrevalenceResults:3147identifiedsearch675116including17���152eligible30214%-40��2���=���1varying18108%-29nonhospitalized364%-60hospitalized7%-88%��2���=���7790%-6��2���=���258I2���=���935%Increasedriskhospitalbirthoddsratio[OR]8733-264antibioticuse9643-611prolongedrupturemembranes8619-684ConclusionsRelevance:systematicreviewmeta-analysiscarriageagedsubstantialdespiteexposureperiodAlthoughhighheterogeneityextrapolationresultsfindingshighlightneedinvestigationidentifytransmissionroutesdesigntargetedeffectivepreventivemeasuresNeonatalColonizationAntibiotic-ResistantPathogensLow-Middle-IncomeCountries:ReviewMeta-Analysis

Similar Articles

Cited By