GnRH-Gonadotropes Interactions Revealed by Pituitary Single-cell Transcriptomics in Zebrafish.

Sakura Tanaka, Yang Yu, Berta Levavi-Sivan, Nilli Zmora, Yonathan Zohar
Author Information
  1. Sakura Tanaka: Institute of Marine & Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, MD 21202, USA. ORCID
  2. Yang Yu: Institute of Marine & Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, MD 21202, USA.
  3. Berta Levavi-Sivan: Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel. ORCID
  4. Nilli Zmora: Institute of Marine & Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, MD 21202, USA. ORCID
  5. Yonathan Zohar: Institute of Marine & Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, MD 21202, USA. ORCID

Abstract

GnRH governs reproduction by regulating pituitary gonadotropins. Unlike most vertebrates, gnrh-/- zebrafish are fertile. To elucidate the role of the hypophysiotropic-Gnrh3 and other mechanisms regulating pituitary gonadotropes, we profiled the gene expression of all individual pituitary cells of wild-type and gnrh3-/- adult female zebrafish. The single-cell RNA sequencing showed that LH and FSH gonadotropes express the 2 gonadotropin beta subunits with a ratio of 140:1 (lhb:fshb) and 4:1 (fshb:lhb), respectively. Lh gonadotropes predominantly express genes encoding receptors for GnRH (gnrhr2), thyroid hormone, estrogen, and steroidogenic factor 1. No GnRH receptor transcript was enriched in FSH gonadotropes. Instead, cholecystokinin receptor-b and galanin receptor-1b transcripts were enriched in these cells. The loss of the Gnrh3 gene in gnrh3-/- zebrafish resulted in downregulation of fshb in LH gonadotropes and upregulation of pituitary hormones like TSH, GH, prolactin, and proopiomelanocortin-a. Likewise, targeted chemogenetic ablation of Gnrh3 neurons led to a decrease in the number of fshb+, lhb + and fshb+/lhb + cells. Our studies suggest that Gnrh3 directly acts on LH gonadotropes through Gnrhr2, but the outcome of this interaction is still unknown. Gnrh3 also regulates fshb expression in both gonadotropes, most likely via a non-GnRH receptor route. Altogether, while LH secretion and synthesis are likely regulated in a GnRH-independent manner, Gnrh3 seems to play a role in the cellular organization of the pituitary. Moreover, the coexpression of lhb and fshb in both gonadotropes provides a possible explanation as to why gnrh3-/- zebrafish are fertile.

Keywords

References

  1. Int J Mol Sci. 2021 Jun 17;22(12): [PMID: 34204216]
  2. Science. 2020 Oct 23;370(6515):463-467 [PMID: 33093109]
  3. Bioinformatics. 2011 Jun 15;27(12):1739-40 [PMID: 21546393]
  4. Nucleic Acids Res. 2022 Jan 7;50(D1):D687-D692 [PMID: 34788843]
  5. Nucleic Acids Res. 2019 Jan 8;47(D1):D33-D38 [PMID: 30204897]
  6. Endocrinology. 2018 Dec 1;159(12):3910-3924 [PMID: 30335147]
  7. Nat Commun. 2021 May 11;12(1):2677 [PMID: 33976139]
  8. J Mol Endocrinol. 2016 May;56(4):T77-97 [PMID: 26880796]
  9. J Clin Endocrinol Metab. 2010 Apr;95(4):1955-61 [PMID: 20133465]
  10. Neuroendocrinology. 1983 May;36(5):351-7 [PMID: 6343907]
  11. Gen Comp Endocrinol. 2010 Feb 1;165(3):412-37 [PMID: 19686749]
  12. Can J Physiol Pharmacol. 2000 Dec;78(12):1077-85 [PMID: 11149384]
  13. Cell Rep. 2022 Mar 8;38(10):110467 [PMID: 35263594]
  14. Front Endocrinol (Lausanne). 2020 Feb 20;11:71 [PMID: 32153508]
  15. Front Neuroendocrinol. 2022 Oct;67:101018 [PMID: 35870647]
  16. Endocrinology. 2013 Feb;154(2):807-18 [PMID: 23295741]
  17. Eur J Neurosci. 2010 Dec;32(12):2053-62 [PMID: 21143660]
  18. J Endocrinol. 2019 Feb 1;240(2):361-377 [PMID: 30594119]
  19. J Clin Invest. 2006 Sep;116(9):2442-55 [PMID: 16932809]
  20. Genes Cells. 2016 May;21(5):492-504 [PMID: 27027936]
  21. Endocrinology. 2022 Feb 1;163(2): [PMID: 34978328]
  22. Dev Biol. 2003 Feb 1;254(1):36-49 [PMID: 12606280]
  23. Endocrinology. 1975 Jul;97(1):196-201 [PMID: 1095356]
  24. Endocrinology. 2006 Jul;147(7):3598-605 [PMID: 16627584]
  25. Metabolism. 2018 Sep;86:3-17 [PMID: 29223677]
  26. Front Endocrinol (Lausanne). 2021 Aug 23;12:719843 [PMID: 34497587]
  27. Front Horm Res. 2010;39:111-120 [PMID: 20389089]
  28. J Biol Chem. 2017 Dec 15;292(50):20720-20731 [PMID: 29054929]
  29. Cell Tissue Res. 2013 Dec;354(3):823-36 [PMID: 24057874]
  30. Mol Cell Endocrinol. 2018 Feb 5;461:1-11 [PMID: 28801227]
  31. Cell. 2021 Jun 24;184(13):3573-3587.e29 [PMID: 34062119]
  32. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  33. Nat Commun. 2020 Mar 27;11(1):1585 [PMID: 32221292]
  34. FASEB J. 1996 Dec;10(14):1569-77 [PMID: 9002548]
  35. Brain Res. 2010 Dec 10;1364:3-9 [PMID: 20887715]
  36. Nucleic Acids Res. 2021 Jan 8;49(D1):D325-D334 [PMID: 33290552]
  37. Cell Syst. 2015 Dec 23;1(6):417-425 [PMID: 26771021]
  38. Lab Invest. 1990 Oct;63(4):511-20 [PMID: 2232704]
  39. J Mol Endocrinol. 2004 Dec;33(3):559-84 [PMID: 15591020]
  40. Gen Comp Endocrinol. 2003 Aug;133(1):27-37 [PMID: 12899844]
  41. Endocrinology. 2017 Mar 1;158(3):604-611 [PMID: 28359084]
  42. Front Endocrinol (Lausanne). 2014 Oct 22;5:182 [PMID: 25379037]
  43. Sci Data. 2021 Oct 28;8(1):279 [PMID: 34711832]
  44. PLoS One. 2016 Jun 29;11(6):e0158141 [PMID: 27355207]
  45. Exp Physiol. 2013 Nov;98(11):1519-21 [PMID: 24148780]
  46. Front Endocrinol (Lausanne). 2020 Sep 10;11:656 [PMID: 33013715]
  47. Nat Commun. 2024 Jun 27;15(1):5342 [PMID: 38937445]
  48. Nat Commun. 2020 Oct 19;11(1):5275 [PMID: 33077725]
  49. Gen Comp Endocrinol. 2020 Feb 1;287:113344 [PMID: 31794734]
  50. Genes Brain Behav. 2007 Mar;6(2):155-66 [PMID: 16764679]
  51. Proc Natl Acad Sci U S A. 2008 Feb 26;105(8):2907-12 [PMID: 18287078]
  52. Biol Reprod. 2018 Sep 1;99(3):565-577 [PMID: 29635430]
  53. Front Endocrinol (Lausanne). 2012 Aug 31;3:107 [PMID: 22969749]
  54. Biol Reprod. 2012 Mar 19;86(3):73 [PMID: 22116804]
  55. Endocrinology. 2010 Jan;151(1):332-40 [PMID: 19861502]
  56. Int J Mol Sci. 2022 May 17;23(10): [PMID: 35628411]
  57. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D277-80 [PMID: 14681412]
  58. Genome Biol. 2015 Dec 10;16:278 [PMID: 26653891]
  59. Stem Cells. 2024 Jan 13;42(1):1-12 [PMID: 37934608]
  60. Nat Commun. 2017 Jan 16;8:14049 [PMID: 28091601]
  61. Biochim Biophys Acta. 2015 Mar;1849(3):328-41 [PMID: 25591470]
  62. Life (Basel). 2022 Apr 27;12(5): [PMID: 35629316]
  63. Gen Comp Endocrinol. 2020 May 15;291:113422 [PMID: 32032603]
  64. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  65. Mol Cell Endocrinol. 2015 Jun 15;408:133-7 [PMID: 25463758]
  66. Endocrinology. 2016 Apr;157(4):1385-96 [PMID: 26812162]
  67. Front Endocrinol (Lausanne). 2020 Dec 07;11:605068 [PMID: 33365013]
  68. Mol Endocrinol. 2016 Oct;30(10):1081-1091 [PMID: 27603413]
  69. Soc Reprod Fertil Suppl. 2010;67:159-69 [PMID: 21755670]
  70. Mol Endocrinol. 1998 May;12(5):714-26 [PMID: 9605934]
  71. Integr Comp Biol. 2008 Nov;48(5):570-87 [PMID: 21669817]
  72. Endocrinology. 2014 May;155(5):1864-73 [PMID: 24517231]
  73. Endocrinology. 2016 Oct;157(10):3994-4002 [PMID: 27560548]

Grants

  1. NSF-BSF #1947541/National Science Foundation

MeSH Term

Animals
Zebrafish
Gonadotropin-Releasing Hormone
Gonadotrophs
Female
Pituitary Gland
Transcriptome
Single-Cell Analysis
Luteinizing Hormone, beta Subunit
Pyrrolidonecarboxylic Acid
Zebrafish Proteins
Luteinizing Hormone

Chemicals

Gonadotropin-Releasing Hormone
gonadotropin-releasing hormone-III
Luteinizing Hormone, beta Subunit
Pyrrolidonecarboxylic Acid
Zebrafish Proteins
Luteinizing Hormone

Word Cloud

Created with Highcharts 10.0.0gonadotropespituitaryLHGnrh3GnRHzebrafishcellsgnrh3-/-fshbreproductionregulatingfertilerolegeneexpressionFSHexpressreceptorenrichedlhb+likelygovernsgonadotropinsUnlikevertebratesgnrh-/-elucidatehypophysiotropic-Gnrh3mechanismsprofiledindividualwild-typeadultfemalesingle-cellRNAsequencingshowed2gonadotropinbetasubunitsratio140:1lhb:fshb4:1fshb:lhbrespectivelyLhpredominantlygenesencodingreceptorsgnrhr2thyroidhormoneestrogensteroidogenicfactor1transcriptInsteadcholecystokininreceptor-bgalaninreceptor-1btranscriptslossresulteddownregulationupregulationhormoneslikeTSHGHprolactinproopiomelanocortin-aLikewisetargetedchemogeneticablationneuronsleddecreasenumberfshb+fshb+/lhbstudiessuggestdirectlyactsGnrhr2outcomeinteractionstillunknownalsoregulatesvianon-GnRHrouteAltogethersecretionsynthesisregulatedGnRH-independentmannerseemsplaycellularorganizationMoreovercoexpressionprovidespossibleexplanationGnRH-GonadotropesInteractionsRevealedPituitarySingle-cellTranscriptomicsZebrafishteleosttranscriptomics

Similar Articles

Cited By