Uncovering migration systems through spatio-temporal tensor co-clustering.

Zack W Almquist, Tri Duc Nguyen, Mikael Sorensen, Xiao Fu, Nicholas D Sidiropoulos
Author Information
  1. Zack W Almquist: Departments of Sociology and Statistics, University of Washington, Seattle, WA, 98195, USA. zalmquist@uw.edu.
  2. Tri Duc Nguyen: Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA.
  3. Mikael Sorensen: Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
  4. Xiao Fu: Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA.
  5. Nicholas D Sidiropoulos: Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA.

Abstract

A central problem in the study of human mobility is that of migration systems. Typically, migration systems are defined as a set of relatively stable movements of people between two or more locations over time. While these emergent systems are expected to vary over time, they ideally contain a stable underlying structure that could be discovered empirically. There have been some notable attempts to formally or informally define migration systems. However, they have been limited by being hard to operationalize and defining migration systems in ways that ignore origin/destination aspects and fail to account for migration dynamics over time. In this work, we propose to employ spatio-temporal tensor co-clustering-that stems from signal processing and machine learning theory-as a novel migration system analysis tool. Tensor co-clustering is designed to cluster entities exhibiting similar patterns across multiple modalities and thus suits our purpose of analyzing spatial migration activities across time. To demonstrate its effectiveness in describing stable migration systems, we first focus on domestic migration between counties in the US from 1990 to 2018. We conduct three case studies on domestic migration, namely, (i) US Metropolitan Areas, (ii) the state of California, and (iii) Louisiana, in which the last focuses on detecting exogenous events such as Hurricane Katrina in 2005. In addition, we also examine a case study at a larger scale, using worldwide international migration data from 200 countries between 1990 and 2015. Finally, we conclude with a discussion of this approach and its limitations.

Keywords

References

  1. Science. 2009 Jul 24;325(5939):414-6 [PMID: 19628855]
  2. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):7821-6 [PMID: 12060727]
  3. Environ Plan A. 1982 Apr;14(4):445-54 [PMID: 12265193]
  4. J Math Sociol. 2024;48(3):311-339 [PMID: 38863581]
  5. Sci Rep. 2016 Aug 01;6:30750 [PMID: 27476470]
  6. Econ Geogr. 1984 Oct;60(4):294-312 [PMID: 12313418]
  7. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016107 [PMID: 21405744]
  8. Geogr Anal. 2015 Jan;47(1):50-72 [PMID: 25684791]
  9. Sociol Methodol. 2014 Aug 1;44(1):273-321 [PMID: 26120218]
  10. Demography. 2012 Nov;49(4):1307-33 [PMID: 22791267]
  11. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 2):036106 [PMID: 17930305]
  12. Demography. 1972 Nov;9(4):665-81 [PMID: 4670350]
  13. J Reg Sci. 1987 Nov;27(4):529-69 [PMID: 12280704]
  14. Philos Trans A Math Phys Eng Sci. 2013 Feb 18;371(1987):20120375 [PMID: 23419844]
  15. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Sep;74(3 Pt 2):036104 [PMID: 17025705]
  16. Nat Commun. 2020 Jun 5;11(1):2785 [PMID: 32503997]
  17. Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 2):066122 [PMID: 22304170]
  18. Popul Environ. 2016 Jun;37(4):449-463 [PMID: 27429504]
  19. Proc Natl Acad Sci U S A. 2019 Jan 2;116(1):116-122 [PMID: 30584106]
  20. Popul Environ. 2014 Mar 1;35(3):305-322 [PMID: 24729651]
  21. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15313-8 [PMID: 16230633]
  22. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 2):026132 [PMID: 16196669]
  23. Sci Data. 2019 Jun 17;6(1):82 [PMID: 31209218]
  24. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Dec;70(6 Pt 2):066111 [PMID: 15697438]
  25. Migrat Lett. 2015 Sep;12(3):279-299 [PMID: 27398085]
  26. Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):E66; author reply E67 [PMID: 19549841]
  27. PLoS One. 2014 Apr 10;9(4):e91431 [PMID: 24722164]
  28. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5328-35 [PMID: 10220465]
  29. J Mach Learn Res. 2008 Sep;9:1981-2014 [PMID: 21701698]
  30. Popul Space Place. 2021 Apr;27(3): [PMID: 39091489]
  31. Science. 2014 Mar 28;343(6178):1520-2 [PMID: 24675962]
  32. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046106 [PMID: 20481785]
  33. Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):36-41 [PMID: 17190818]
  34. Popul Res Policy Rev. 2022 Apr;41(2):437-448 [PMID: 35370330]
  35. Math Models Methods Appl Sci. 2020 Jul;30(8):1591-1651 [PMID: 35309741]
  36. Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1118-23 [PMID: 18216267]
  37. Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):13915-21 [PMID: 22908249]
  38. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Apr;75(4 Pt 2):045102 [PMID: 17500946]
  39. Nature. 2018 Jun;558(7711):528-529 [PMID: 29941900]
  40. Science. 2020 Aug 28;369(6507):1060-1062 [PMID: 32855329]
  41. Sci Data. 2016 Aug 16;3:160066 [PMID: 27529469]
  42. Proc Natl Acad Sci U S A. 2011 May 10;108(19):7663-8 [PMID: 21518910]

Grants

  1. P2C HD042828/NICHD NIH HHS
  2. W911NF-19-1-0407/Army Research Office
  3. 2142964/National Science Foundation

Word Cloud

Created with Highcharts 10.0.0migrationsystemstimestablestudyspatio-temporaltensorco-clusteringacrossdomesticUS1990casecentralproblemhumanmobilityTypicallydefinedsetrelativelymovementspeopletwolocationsemergentexpectedvaryideallycontainunderlyingstructurediscoveredempiricallynotableattemptsformallyinformallydefineHoweverlimitedhardoperationalizedefiningwaysignoreorigin/destinationaspectsfailaccountdynamicsworkproposeemployco-clustering-thatstemssignalprocessingmachinelearningtheory-asnovelsystemanalysistoolTensordesignedclusterentitiesexhibitingsimilarpatternsmultiplemodalitiesthussuitspurposeanalyzingspatialactivitiesdemonstrateeffectivenessdescribingfirstfocuscounties2018conductthreestudiesnamelyMetropolitanAreasiistateCaliforniaiiiLouisianalastfocusesdetectingexogenouseventsHurricaneKatrina2005additionalsoexaminelargerscaleusingworldwideinternationaldata200countries2015FinallyconcludediscussionapproachlimitationsUncoveringClusteringDynamicclusteringMigrationNetworkscienceSocialnetworksTensors

Similar Articles

Cited By