Using fungal-bacterial community analysis to explore potential microbiomes to manage .

Qipeng Jiang, Yong Wang, Jiamin Yu, Jinfeng Wang, Shiping Guo, Dongyang Liu, Xiangwen Yu, Lianqiang Jiang, Gang Long, Daojiang Xi, Shuhong Chen, Yue Wang, Wei Ding
Author Information
  1. Qipeng Jiang: College of Plant Protection, Southwest University, Chongqing, China.
  2. Yong Wang: Liangshan Branch of Sichuan Tobacco Company, Xichang, China.
  3. Jiamin Yu: Sichuan Branch of China Tobacco Corporation, Chengdu, China.
  4. Jinfeng Wang: College of Plant Protection, Southwest University, Chongqing, China.
  5. Shiping Guo: Sichuan Branch of China Tobacco Corporation, Chengdu, China.
  6. Dongyang Liu: Liangshan Branch of Sichuan Tobacco Company, Xichang, China.
  7. Xiangwen Yu: Sichuan Branch of China Tobacco Corporation, Chengdu, China.
  8. Lianqiang Jiang: Liangshan Branch of Sichuan Tobacco Company, Xichang, China.
  9. Gang Long: Liangshan Branch of Sichuan Tobacco Company, Xichang, China.
  10. Daojiang Xi: College of Plant Protection, Southwest University, Chongqing, China.
  11. Shuhong Chen: Liangshan Branch of Sichuan Tobacco Company, Xichang, China.
  12. Yue Wang: College of Plant Protection, Southwest University, Chongqing, China.
  13. Wei Ding: College of Plant Protection, Southwest University, Chongqing, China.

Abstract

Rhizosphere microbial communities strongly affect outbreaks of root-knot nematode (RKN) disease. However, little is known about the interactions among fungi, bacteria and RKN. The bacterial and fungal community compositions in the rhizospheres of four representative tobacco varieties, both resistant and susceptible to RKN, were characterized using 16S rRNA gene sequencing for bacteria and internal transcribed spacer gene sequencing for fungi. Our findings revealed that the fungi played crucial roles in facilitating the cross-kingdom and symbiotic fungal-bacterial interactions to suppress RKN. Moreover, our investigation suggested as a potential microbial antagonist against RKN based on its enhanced presence in RKN-resistant tobacco genotypes, and the relative abundance of was 34.49% greater in the rhizosphere of resistant tobacco than that of susceptible tobacco significantly. Notably, the richness of fungal community enhanced tobacco's microbe-associated resistance to RKN through the positive regulation of the richness and diversity of bacterial community and the relative abundance of . This study underscores the critical role of the fungus-dominated fungal-bacterial community in bolstering tobacco resistance against RKN. The potential antagonistic role of presents promising avenues for innovative RKN management strategies.

Keywords

References

  1. AMB Express. 2017 Sep 18;7(1):178 [PMID: 28921475]
  2. Front Microbiol. 2020 Nov 30;11:569512 [PMID: 33424780]
  3. J Sci Food Agric. 2023 Apr;103(6):2794-2805 [PMID: 36369962]
  4. ISME J. 2018 Dec;12(12):3038-3042 [PMID: 30018368]
  5. Sci Rep. 2016 Nov 18;6:36773 [PMID: 27857159]
  6. Nat Commun. 2022 Jun 16;13(1):3228 [PMID: 35710629]
  7. Microbiol Res. 2019 Apr;221:36-49 [PMID: 30825940]
  8. Front Fungal Biol. 2022 Oct 20;3:1022761 [PMID: 37746204]
  9. Genomics. 2020 Mar;112(2):1956-1969 [PMID: 31740292]
  10. Front Plant Sci. 2023 Aug 28;14:1213494 [PMID: 37701805]
  11. Microb Ecol. 2021 Apr;81(3):731-745 [PMID: 33108474]
  12. Front Microbiol. 2023 Dec 01;14:1282609 [PMID: 38107871]
  13. Mol Plant Pathol. 2013 Dec;14(9):946-61 [PMID: 23809086]
  14. Ecol Evol. 2015 Sep;5(17):3677-86 [PMID: 26380696]
  15. Genes (Basel). 2019 Nov 14;10(11): [PMID: 31739481]
  16. J Fungi (Basel). 2020 Oct 04;6(4): [PMID: 33020457]
  17. Microbiol Res. 2022 Jun;259:127016 [PMID: 35390741]
  18. New Phytol. 2023 Jun;238(6):2305-2312 [PMID: 37010088]
  19. Front Plant Sci. 2022 May 12;13:879076 [PMID: 35646045]
  20. Appl Environ Microbiol. 2014 May;80(9):2679-86 [PMID: 24532076]
  21. Mol Plant Microbe Interact. 2017 Mar;30(3):255-266 [PMID: 28151048]
  22. Pest Manag Sci. 2020 Jun;76(6):2217-2224 [PMID: 31970922]
  23. Front Microbiol. 2022 Apr 07;13:863341 [PMID: 35464941]
  24. Environ Microbiol. 2020 Feb;22(2):564-567 [PMID: 31849163]
  25. Microbiol Res. 2023 Jun;271:127368 [PMID: 36965460]
  26. Pest Manag Sci. 2019 Dec;75(12):3381-3391 [PMID: 31282045]
  27. Trends Plant Sci. 2018 Jan;23(1):25-41 [PMID: 29050989]
  28. Front Microbiol. 2019 Nov 12;10:2535 [PMID: 31781059]
  29. Microorganisms. 2023 Sep 21;11(9): [PMID: 37764208]
  30. Front Plant Sci. 2020 Jul 22;11:1125 [PMID: 32793271]
  31. Front Microbiol. 2019 Jul 23;10:1668 [PMID: 31396185]
  32. Front Microbiol. 2022 Aug 02;13:949152 [PMID: 35983324]
  33. Nat Rev Microbiol. 2023 Jan;21(1):6-20 [PMID: 35999468]
  34. PLoS One. 2017 May 4;12(5):e0177145 [PMID: 28472099]
  35. Microbiol Resour Announc. 2020 Jan 23;9(4): [PMID: 31974148]
  36. Trends Plant Sci. 2012 Aug;17(8):478-86 [PMID: 22564542]
  37. ISME Commun. 2023 Nov 20;3(1):120 [PMID: 37985715]
  38. Mol Plant Pathol. 2003 Jul 1;4(4):217-24 [PMID: 20569382]
  39. Microbiome. 2019 Feb 27;7(1):33 [PMID: 30813951]
  40. Front Microbiol. 2022 Apr 04;13:697815 [PMID: 35444626]
  41. Mol Plant. 2023 Sep 4;16(9):1379-1395 [PMID: 37563832]
  42. New Phytol. 2017 Feb;213(3):1363-1377 [PMID: 27801946]
  43. Microb Ecol. 2019 Aug;78(2):470-481 [PMID: 30666369]
  44. Front Microbiol. 2015 Sep 02;6:922 [PMID: 26388861]
  45. ISME J. 2021 Jan;15(1):330-347 [PMID: 33028974]
  46. Sci Adv. 2019 Sep 25;5(9):eaaw0759 [PMID: 31579818]
  47. Microorganisms. 2020 May 29;8(6): [PMID: 32486107]
  48. J Hazard Mater. 2024 Mar 5;465:133121 [PMID: 38056279]
  49. Chimia (Aarau). 2022 Nov 30;76(11):922-927 [PMID: 38069787]
  50. Pest Manag Sci. 2021 Oct;77(10):4365-4374 [PMID: 33963810]
  51. Annu Rev Plant Biol. 2006;57:233-66 [PMID: 16669762]
  52. Microbiome. 2020 Jun 30;8(1):103 [PMID: 32605663]
  53. Sci Rep. 2014 Sep 17;4:6389 [PMID: 25227415]
  54. Front Plant Sci. 2023 Apr 25;14:1165567 [PMID: 37180403]

Word Cloud

Created with Highcharts 10.0.0RKNtobaccocommunityfungal-bacterialfungipotentialresistancemicrobialroot-knotinteractionsbacteriabacterialfungalresistantsusceptiblegenesequencingenhancedrelativeabundancerichnessroleRhizospherecommunitiesstronglyaffectoutbreaksnematodediseaseHoweverlittleknownamongcompositionsrhizospheresfourrepresentativevarietiescharacterizedusing16SrRNAinternaltranscribedspacerfindingsrevealedplayedcrucialrolesfacilitatingcross-kingdomsymbioticsuppressMoreoverinvestigationsuggestedantagonistbasedpresenceRKN-resistantgenotypes3449%greaterrhizospheresignificantlyNotablytobacco'smicrobe-associatedpositiveregulationdiversitystudyunderscorescriticalfungus-dominatedbolsteringantagonisticpresentspromisingavenuesinnovativemanagementstrategiesUsinganalysisexploremicrobiomesmanageMicrobacteriumco-occurrencenetworkinteractionnematodes

Similar Articles

Cited By