Electrophoretic Deposition of Carbon-Ionomer Layers on Proton Conducting Membranes.

Michael Bredol, Ivan Radev, Giulia Primavera, Thomas Lange, Adib Caidi, Volker Peinecke
Author Information
  1. Michael Bredol: FH Münster University of Applied Sciences, Department of Chemical Engineering, Steinfurt, Germany. ORCID
  2. Ivan Radev: ZBT GmbH, The Hydrogen and Fuel Cell Center, Duisburg, Germany.
  3. Giulia Primavera: FH Münster University of Applied Sciences, Department of Chemical Engineering, Steinfurt, Germany.
  4. Thomas Lange: ZBT GmbH, The Hydrogen and Fuel Cell Center, Duisburg, Germany.
  5. Adib Caidi: ZBT GmbH, The Hydrogen and Fuel Cell Center, Duisburg, Germany.
  6. Volker Peinecke: ZBT GmbH, The Hydrogen and Fuel Cell Center, Duisburg, Germany.

Abstract

Synthetic and natural carbons are widely used as carrier for electrodes in electrochemical applications. They need to have a controlled morphology in order to facilitate mass and charge transport, so the process of film formation is of uttermost importance. Here we show, how carbons (after proper preconditioning) can be codeposited with an ionomer by electrophoretic deposition, a method that does allow full control of deposition conditions during the process. In view of potential applications, we focus on the direct deposition on proton-conducting membranes. Ionomers and membranes applied are based on established per-fluorinated polyethylene with SOH-terminated side chains (PFSA). Conditions for reproducible deposition are reported in terms of optimal charge on the carbon particles, field strength in the deposition cell and necessary deposition times for a given film thickness. Additionally, a horizontal cell arrangement is suggested to avoid gravitational effects.

Keywords

References

  1. Z. Song, L. Miao, Y. Lv, L. Gan, M. Liu, J. Mater. Chem. A 2023, 11, 12434.
  2. Z. Xie, T. Navessin, K. Shi, R. Chow, Q. Wang, D. Song, B. Andreaus, M. Eikerling, Z. Liu, S. Holdcroft, J. Electrochem. Soc. 2005, 152, A1171.
  3. L. Besra, M. Liu, Prog. Mater. Sci. 2007, 52, 1.
  4. B. Giera, L. A. Zepeda-Ruiz, A. J. Pascall, T. H. Weisgraber, Langmuir 2017, 33, 652.
  5. P. Sarkar, P. S. Nicholson, J. Am. Ceram. Soc. 1996, 79, 1987.
  6. G. Falk, J. Phys. Chem. B 2013, 117, 1527.
  7. A. Singh, N. J. English, K. M. Ryan, J. Phys. Chem. B 2013, 117, 1608.
  8. T. Lin, S. M. Rubinstein, A. Korchev, D. A. Weitz, Langmuir 2014, 30, 12119.
  9. T. Prasse, L. Flandin, K. Schulte, W. Bauhofer, Appl. Phys. Lett. 1998, 72, 2903.
  10. M. Trau, D. A. Saville, I. A. Aksay, Langmuir 1997, 13, 6375.
  11. T. D. Edwards, M. A. Bevan, Langmuir 2014, 30, 10793.
  12. A. Chavez-Valdez, M. S. P. Shaffer, A. R. Boccaccini, J. Phys. Chem. B 2012, 117, 1502.
  13. P. M. Vilarinho, Z. Fu, A. Wu, A. Axelsson, A. I. Kingon, Langmuir 2015, 31, 2127.
  14. K. R. Panta, C. A. Orme, B. N. Flanders, J. Colloid Interface Sci. 2023, 636, 363.
  15. H. Zhang, Y. Liu, Y. Dong, A. Ashokan, A. Widmer-Cooper, J. Köhler, P. Mulvaney, Langmuir 2024, 40, 2783.
  16. M. A. Salazar de Troya, J. R. Morales, B. Giera, A. J. Pascall, M. A. Worsley, R. Landingham, W. L. Du Frane, J. D. Kuntz, Mater. Des. 2021, 209, 110000.
  17. I. Fouzaï, S. Gentil, V. C. Bassetto, W. O. Silva, R. Maher, H. H. Girault, J. Mater. Chem. A 2021, 9, 11096.
  18. K. Jiao, J. Xuan, Q. Du, Z. Bao, B. Xie, B. Wang, Y. Zhao, L. Fan, H. Wang, Z. Hou, S. Huo, N. P. Brandon, Y. Yin, M. D. Guiver, Nature 2021, 595, 361.
  19. S. Sui, X. Wang, X. Zhou, Y. Su, S. Riffat, C.-j. Liu, J. Mater. Chem. A 2017, 5, 1808.
  20. M. Bredol, A. Szydło, I. Radev, W. Philippi, R. Bartholomäus, V. Peinecke, A. Heinzel, J. Power Sources 2018, 402, 15 .
  21. D. V. Matyushov, J. Phys. Chem. B 2024, 128, 2930.
  22. A. Chávez-Valdez, A. R. Boccaccini, Electrochim. Acta 2012, 65, 70.
  23. B. Neirinck, O. Van der Biest, J. Vleugels, J. Phys. Chem. B 2013, 117, 1516.
  24. M. Ammam, RSC Adv. 2012, 2, 7633.
  25. M. N. Naim, M. Iijima, H. Kamiya, I. W. Lenggoro, Colloids Surf. A 2010, 360, 13.
  26. B. Neirinck, J. Fransaer, O. Van der Biest, J. Vleugels, Electrochem. Commun. 2009, 11, 57.
  27. M. N. Naim, M. Iijima, K. Sasaki, M. Kuwata, H. Kamiya, I. W. Lenggoro, Adv. Powder Technol. 2010, 21, 534.
  28. T. Uchikoshi, J. Ceram. Soc. Jpn. 2024, 132, 387.
  29. A. Szydło, J.-D. Goossen, C. Linte, H. Uphoff, M. Bredol, Mater. Chem. Phys. 2020, 242, 122532.
  30. M. Bredol, J. Micior, S. Klemme, J. Mater. Sci. 2014, 49, 6975.
  31. P. Tiwari, N. D. Ferson, D. P. Arnold, J. S. Andrew, Front. Chem. 2022, 10.
  32. N. T. K. Nguyen, A. Renaud, B. Dierre, B. Bouteille, M. Wilmet, M. Dubernet, N. Ohashi, F. Grasset, T. Uchikoshi, Bull. Chem. Soc. Jpn. 2018, 91, 1763.
  33. J.-D. Goossen, A. Alizade, M. Bredol, Mater. Chem. Phys. 2020, 239, 122083.
  34. Y. Iso, S. Takeshita, T. Isobe, Langmuir 2014, 30, 1465.
  35. M. Akram, N. Arshad, M. K. Aktan, A. Braem, ACS Appl. Bio Mater. 2020, 3, 7052.
  36. H. Srivastav, A. Z. Weber, C. J. Radke, Langmuir 2024, 40, 6654.
  37. H. Srivastav, A. Z. Weber, C. J. Radke, Langmuir 2024, 40, 6666.
  38. G. Onuh, D. Harries, O. Manor, Langmuir 2024, 40, 8554.
  39. F. Ma, Y. Z. Zhang, X. L. Ding, L. G. Lin, H. Li, Adv. Mater. Res. 2011, 221, 37.
  40. C. Heitner-Wirguin, Polymer 1979, 20, 371.
  41. S. R. Lowry, K. A. Mauritz, J. Am. Chem. Soc. 1980, 102, 4665.
  42. J. Ostrowska, A. Narebska, Colloid Polym. Sci. 1983, 261, 93.

Grants

  1. /Department of Chemical Engineering, FH Münster

Word Cloud

Created with Highcharts 10.0.0depositionmembranescarbonsapplicationschargeprocessfilmelectrophoreticcarboncellSyntheticnaturalwidelyusedcarrierelectrodeselectrochemicalneedcontrolledmorphologyorderfacilitatemasstransportformationuttermostimportanceshowproperpreconditioningcancodepositedionomermethodallowfullcontrolconditionsviewpotentialfocusdirectproton-conductingIonomersappliedbasedestablishedper-fluorinatedpolyethyleneSOH-terminatedsidechainsPFSAConditionsreproduciblereportedtermsoptimalparticlesfieldstrengthnecessarytimesgiventhicknessAdditionallyhorizontalarrangementsuggestedavoidgravitationaleffectsElectrophoreticDepositionCarbon-IonomerLayersProtonConductingMembranesprotonconducting

Similar Articles

Cited By