Comprehensive single-cell and bulk transcriptomic analyses to develop an NK cell-derived gene signature for prognostic assessment and precision medicine in breast cancer.

Qianshan Hou, Chunzhen Li, Yuhui Chong, Haofeng Yin, Yuchen Guo, Lanjie Yang, Tianliang Li, Shulei Yin
Author Information
  1. Qianshan Hou: National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China.
  2. Chunzhen Li: National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China.
  3. Yuhui Chong: School of Pharmacy, Naval Medical University, Shanghai, China.
  4. Haofeng Yin: National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China.
  5. Yuchen Guo: National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China.
  6. Lanjie Yang: National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China.
  7. Tianliang Li: National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China.
  8. Shulei Yin: National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China.

Abstract

Background: Natural killer (NK) cells play crucial roles in mediating anti-cancer activity in breast cancer (BRCA). However, the potential of NK cell-related molecules in predicting BRCA outcomes and guiding personalized therapy remains largely unexplored. This study focused on developing a prognostic and therapeutic prediction model for BRCA by incorporating NK cell-related genes.
Methods: The data analyzed primarily originated from the TCGA and GEO databases. The prognostic role of NK cells was evaluated, and marker genes of NK cells were identified via single-cell analysis. Module genes closely associated with immunotherapy resistance were identified by bulk transcriptome-based weighted correlation network analysis (WGCNA). Following taking intersection and LASSO regression, NK-related genes (NKRGs) relevant to BRCA prognosis were screened, and the NK-related prognostic signature was subsequently constructed. Analyses were further expanded to clinicopathological relevance, GSEA, tumor microenvironment (TME) analysis, immune function, immunotherapy responsiveness, and chemotherapeutics. Key NKRGs were screened by machine learning and validated by spatial transcriptomics (ST) and immunohistochemistry (IHC).
Results: Tumor-infiltrating NK cells are a favorable prognostic factor in BRCA. By combining scRNA-seq and bulk transcriptomic analyses, we identified 7 NK-related prognostic NKRGs (CCL5, EFHD2, KLRB1, C1S, SOCS3, IRF1, and CCND2) and developed an NK-related risk scoring (NKRS) system. The prognostic reliability of NKRS was verified through survival and clinical relevance analyses across multiple cohorts. NKRS also demonstrated robust predictive power in various aspects, including TME landscape, immune functions, immunotherapy responses, and chemotherapeutic sensitivity. Additionally, KLRB1 and CCND2 emerged as key prognostic NKRGs identified through machine learning and external validation, with their expression correlation with NK cells confirmed in BRCA specimens by ST and IHC.
Conclusions: We developed a novel NK-related gene signature that has proven valuable for evaluating prognosis and treatment response in BRCA, expecting to advance precision medicine of BRCA.

Keywords

References

  1. J Ethnopharmacol. 2024 Oct 28;333:118400 [PMID: 38823657]
  2. Bioorg Chem. 2024 Feb;143:107077 [PMID: 38176377]
  3. Adv Mater. 2024 Oct;36(43):e2311505 [PMID: 38279892]
  4. Cell. 2021 Mar 4;184(5):1281-1298.e26 [PMID: 33592174]
  5. J Immunol. 2012 Dec 15;189(12):5602-11 [PMID: 23152559]
  6. Stat Med. 1997 Feb 28;16(4):385-95 [PMID: 9044528]
  7. Nature. 2018 Feb 22;554(7693):544-548 [PMID: 29443960]
  8. Front Immunol. 2024 May 13;15:1385484 [PMID: 38803496]
  9. Mol Cancer. 2023 Nov 27;22(1):187 [PMID: 38008741]
  10. Cell. 2017 Nov 2;171(4):934-949.e16 [PMID: 29033130]
  11. Front Oncol. 2024 May 10;14:1385577 [PMID: 38800404]
  12. CA Cancer J Clin. 2024 May-Jun;74(3):229-263 [PMID: 38572751]
  13. Commun Biol. 2024 May 31;7(1):669 [PMID: 38822095]
  14. Nat Rev Clin Oncol. 2021 Feb;18(2):85-100 [PMID: 32934330]
  15. J Immunol. 2005 May 15;174(10):6013-22 [PMID: 15879094]
  16. Nat Rev Immunol. 2018 Jan;18(1):5-18 [PMID: 28920587]
  17. Nat Rev Cancer. 2024 Jan;24(1):28-50 [PMID: 38066335]
  18. J Hepatol. 2024 Sep;81(3):389-403 [PMID: 38670321]
  19. Cell. 2022 Apr 28;185(9):1521-1538.e18 [PMID: 35447071]
  20. Front Immunol. 2024 Apr 17;15:1390498 [PMID: 38694508]
  21. Front Immunol. 2022 Jun 10;13:850745 [PMID: 35757748]
  22. Front Immunol. 2024 Jan 25;15:1289644 [PMID: 38333214]
  23. Cancer Treat Rev. 2024 Apr;125:102718 [PMID: 38521009]
  24. Cancer Cell. 2024 Mar 11;42(3):474-486.e12 [PMID: 38402610]
  25. Am J Cancer Res. 2022 Dec 15;12(12):5440-5461 [PMID: 36628282]
  26. FEBS Lett. 2006 Feb 6;580(3):755-62 [PMID: 16413538]
  27. Mol Cancer. 2023 Jul 6;22(1):105 [PMID: 37415164]
  28. Nat Rev Cancer. 2023 Jun;23(6):351-371 [PMID: 37081117]
  29. Biochim Biophys Acta Rev Cancer. 2021 Dec;1876(2):188585 [PMID: 34224836]
  30. J Immunother. 2024 Jul-Aug 01;47(6):195-204 [PMID: 38654631]
  31. Cancer Cell. 2019 Feb 11;35(2):238-255.e6 [PMID: 30753825]
  32. Nat Methods. 2015 May;12(5):453-7 [PMID: 25822800]
  33. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  34. Front Immunol. 2022 Aug 08;13:947841 [PMID: 36003382]
  35. Cell Mol Immunol. 2021 Sep;18(9):2083-2100 [PMID: 34267335]
  36. Nat Med. 2018 Oct;24(10):1550-1558 [PMID: 30127393]
  37. Semin Cancer Biol. 2020 Feb;60:14-27 [PMID: 31421262]
  38. Sci Rep. 2024 Jun 5;14(1):12926 [PMID: 38839842]
  39. J Immunother Cancer. 2024 May 7;12(5): [PMID: 38719543]
  40. Ann Oncol. 2019 Mar 1;30(3):397-404 [PMID: 30475950]
  41. Front Immunol. 2021 Jul 02;12:687975 [PMID: 34276676]
  42. CA Cancer J Clin. 2024 Jan-Feb;74(1):12-49 [PMID: 38230766]
  43. Front Endocrinol (Lausanne). 2023 Jun 07;14:1185799 [PMID: 37351109]
  44. Hum Vaccin Immunother. 2024 Dec 31;20(1):2335728 [PMID: 38563136]
  45. J Mol Med (Berl). 2021 Nov;99(11):1553-1569 [PMID: 34432073]
  46. Oncol Rep. 2021 Nov;46(5): [PMID: 34498710]
  47. Cell Rep. 2024 Jun 25;43(6):114289 [PMID: 38833371]
  48. Front Immunol. 2024 Jan 03;14:1307588 [PMID: 38235137]
  49. Cell Syst. 2015 Dec 23;1(6):417-425 [PMID: 26771021]
  50. Front Immunol. 2022 Sep 13;13:994019 [PMID: 36177006]
  51. PLoS Med. 2018 Nov 6;15(11):e1002674 [PMID: 30399150]
  52. Cell Mol Immunol. 2019 Mar;16(3):242-249 [PMID: 30796351]
  53. Genome Biol. 2016 Oct 20;17(1):218 [PMID: 27765066]
  54. Front Genet. 2019 Apr 05;10:317 [PMID: 31024627]
  55. Lancet. 2018 Mar 17;391(10125):1023-1075 [PMID: 29395269]
  56. Sci Immunol. 2021 Jul 9;6(61): [PMID: 34244313]
  57. Biomark Res. 2020 Oct 2;8:50 [PMID: 33024562]
  58. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  59. Adv Sci (Weinh). 2024 Aug;11(29):e2400920 [PMID: 38828677]
  60. Nat Rev Cancer. 2023 May;23(5):295-316 [PMID: 37046001]
  61. Adv Sci (Weinh). 2020 Feb 11;7(7):1902880 [PMID: 32274301]
  62. Nat Rev Cancer. 2020 Aug;20(8):437-454 [PMID: 32581320]
  63. Breast Cancer. 2022 Jan;29(1):121-130 [PMID: 34449047]
  64. Int J Pharm. 2024 Jun 25;659:124292 [PMID: 38823466]
  65. Front Immunol. 2023 Mar 24;14:1127982 [PMID: 37033959]
  66. Cell Rep. 2017 Jan 3;18(1):248-262 [PMID: 28052254]
  67. Genome Med. 2020 Feb 26;12(1):21 [PMID: 32102694]
  68. Cancer Cell. 2023 Mar 13;41(3):374-403 [PMID: 36917948]
  69. Exp Hematol Oncol. 2022 Jan 24;11(1):3 [PMID: 35074008]
  70. Cell. 2021 Jan 21;184(2):404-421.e16 [PMID: 33357445]
  71. Nat Cancer. 2023 Mar;4(3):317-329 [PMID: 36894637]
  72. Cancer Treat Rev. 2024 Jul;128:102762 [PMID: 38776613]
  73. Biomedicines. 2024 May 14;12(5): [PMID: 38791050]
  74. N Engl J Med. 2006 Dec 28;355(26):2733-43 [PMID: 17192538]
  75. Lancet Oncol. 2021 Apr;22(4):499-511 [PMID: 33676601]
  76. BMC Bioinformatics. 2013 Jan 16;14:7 [PMID: 23323831]
  77. Sci Rep. 2024 May 23;14(1):11782 [PMID: 38782996]
  78. BMC Med. 2023 Sep 29;21(1):377 [PMID: 37775746]
  79. PLoS One. 2016 Sep 01;11(9):e0161859 [PMID: 27583477]
  80. Front Immunol. 2022 May 04;13:880769 [PMID: 35603183]
  81. Signal Transduct Target Ther. 2023 Feb 17;8(1):70 [PMID: 36797231]
  82. Signal Transduct Target Ther. 2021 Jul 12;6(1):263 [PMID: 34248142]
  83. Artif Intell Med. 2022 Feb;124:102234 [PMID: 35115129]
  84. Cancer Immunol Immunother. 2023 Oct;72(10):3259-3277 [PMID: 37458771]
  85. Genome Biol. 2014 Mar 03;15(3):R47 [PMID: 24580837]
  86. Nat Commun. 2013;4:2612 [PMID: 24113773]
  87. Nat Immunol. 2020 Aug;21(8):835-847 [PMID: 32690952]
  88. Cancer Cell. 2021 Jul 12;39(7):989-998.e5 [PMID: 34143979]
  89. Pharmacol Res. 2024 May;203:107181 [PMID: 38614375]
  90. Sci Transl Med. 2020 Nov 4;12(568): [PMID: 33148626]
  91. Cell. 2018 Feb 22;172(5):1022-1037.e14 [PMID: 29429633]
  92. Science. 2006 Sep 29;313(5795):1929-35 [PMID: 17008526]
  93. Annu Rev Immunol. 2013;31:227-58 [PMID: 23516982]

MeSH Term

Humans
Killer Cells, Natural
Female
Breast Neoplasms
Precision Medicine
Single-Cell Analysis
Prognosis
Transcriptome
Gene Expression Profiling
Biomarkers, Tumor
Tumor Microenvironment
Gene Expression Regulation, Neoplastic
Lymphocytes, Tumor-Infiltrating
Middle Aged

Chemicals

Biomarkers, Tumor

Word Cloud

Created with Highcharts 10.0.0NKprognosticBRCAcellsNK-relatedgenesidentifiedimmunotherapyNKRGssignaturebreastcanceranalysisbulkanalysesNKRSkillercell-relatedsingle-cellcorrelationprognosisscreenedrelevancetumormicroenvironmentTMEimmunemachinelearningSTIHCscRNA-seqtranscriptomicKLRB1CCND2developedgeneprecisionmedicineBackground:Naturalplaycrucialrolesmediatinganti-canceractivityHoweverpotentialmoleculespredictingoutcomesguidingpersonalizedtherapyremainslargelyunexploredstudyfocuseddevelopingtherapeuticpredictionmodelincorporatingMethods:dataanalyzedprimarilyoriginatedTCGAGEOdatabasesroleevaluatedmarkerviaModulecloselyassociatedresistancetranscriptome-basedweightednetworkWGCNAFollowingtakingintersectionLASSOregressionrelevantsubsequentlyconstructedAnalysesexpandedclinicopathologicalGSEAfunctionresponsivenesschemotherapeuticsKeyvalidatedspatialtranscriptomicsimmunohistochemistryResults:Tumor-infiltratingfavorablefactorcombining7CCL5EFHD2C1SSOCS3IRF1riskscoringsystemreliabilityverifiedsurvivalclinicalacrossmultiplecohortsalsodemonstratedrobustpredictivepowervariousaspectsincludinglandscapefunctionsresponseschemotherapeuticsensitivityAdditionallyemergedkeyexternalvalidationexpressionconfirmedspecimensConclusions:novelprovenvaluableevaluatingtreatmentresponseexpectingadvanceComprehensivedevelopcell-derivedassessmentnaturalcell

Similar Articles

Cited By