Impacts of MDR/XDR-TB on the global tuberculosis epidemic: Challenges and opportunities.

Kai Ling Chin, Luis Anibarro, Zi Yuan Chang, Praneetha Palasuberniam, Zainal Arifin Mustapha, Maria E Sarmiento, Armando Acosta
Author Information
  1. Kai Ling Chin: Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
  2. Luis Anibarro: Tuberculosis Unit, Infectious Diseases, and Internal Medicine Department, Complexo Hospitalario Universitario de Pontevedra, Pontevedra, Spain.
  3. Zi Yuan Chang: Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
  4. Praneetha Palasuberniam: Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
  5. Zainal Arifin Mustapha: Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.
  6. Maria E Sarmiento: Formerly School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia. Independent Researcher.
  7. Armando Acosta: Formerly School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia. Independent Researcher.

Abstract

Tuberculosis (TB) is the world's second-deadliest infectious disease. Despite the availability of drugs to cure TB, control of TB is hampered by the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). The presence of MDR/XDR-TB is alarming due to the low detection rate, high treatment failure, and high mortality. The increasing cases of MDR/XDR-TB are mainly due to the limitations in the diagnostic tests to detect the drug susceptibility of the pathogen, which contribute to the spread of the disease through close contacts. Moreover, inconsistent drug therapy or unsuitable drug regimens could also lead to the subsequent development of drug resistance. The close contacts of an index MDR/XDR-TB patient are at increased risk of developing MDR/XDR-TB. Also, the BCG vaccine may exhibit varying protective effects due to BCG strain diversification, host immune status, exposure to environmental non-tuberculous mycobacteria (NTM), and differences in (Mtb) subspecies infection, as in the case of sub-optimal protection in the case of Beijing family genotypes of Mtb. This review provides an overview of the current state of drug-resistant tuberculosis (DR-TB) within the context of the global TB pandemic, with a focus on diagnosis, treatment, and the potential impact of BCG vaccination. It highlights the limitations of current approaches and aims to identify opportunities for improving TB control strategies.

Keywords

References

  1. Toxics. 2024 Jan 22;12(1): [PMID: 38276728]
  2. Tuberculosis (Edinb). 2017 Dec;107:20-30 [PMID: 29050768]
  3. Hum Vaccin Immunother. 2017 Sep 2;13(9):1960-1971 [PMID: 28604170]
  4. PLoS One. 2015 Feb 19;10(2):e0119013 [PMID: 25695504]
  5. Tuberculosis (Edinb). 2019 Jan;114:54-60 [PMID: 30711158]
  6. Int J Tuberc Lung Dis. 2017 Mar 1;21(3):297-302 [PMID: 28225339]
  7. Cell. 2011 Apr 1;145(1):39-53 [PMID: 21376383]
  8. Trop Med Infect Dis. 2023 Jan 28;8(2): [PMID: 36828505]
  9. Xenobiotica. 2008 Jul;38(7-8):1107-18 [PMID: 18668441]
  10. Int J Tuberc Lung Dis. 2014 Aug;18(8):912-8 [PMID: 25199004]
  11. Lancet Infect Dis. 2019 Aug;19(8):903-912 [PMID: 31281059]
  12. Antimicrob Agents Chemother. 2012 May;56(5):2643-51 [PMID: 22314527]
  13. J Clin Microbiol. 2012 Feb;50(2):488-91 [PMID: 22135258]
  14. Antimicrob Agents Chemother. 2015 Sep;59(9):5267-77 [PMID: 26077261]
  15. Antimicrob Agents Chemother. 2003 Dec;47(12):3799-805 [PMID: 14638486]
  16. Front Cell Infect Microbiol. 2017 Apr 11;7:117 [PMID: 28443247]
  17. Infect Genet Evol. 2012 Jun;12(4):695-700 [PMID: 21871582]
  18. Diagn Microbiol Infect Dis. 2016 Aug;85(4):433-7 [PMID: 27298046]
  19. Vaccine. 2021 Dec 8;39(50):7277-7285 [PMID: 34238608]
  20. Epidemiol Infect. 2022 Jan 07;150:e22 [PMID: 35086603]
  21. Antimicrob Agents Chemother. 2014;58(1):11-8 [PMID: 24100497]
  22. Appl Environ Microbiol. 2004 Apr;70(4):2398-403 [PMID: 15066837]
  23. Eur J Clin Microbiol Infect Dis. 2024 Jan;43(1):73-85 [PMID: 37943394]
  24. Int J Tuberc Lung Dis. 2022 Feb 1;26(2):171-173 [PMID: 35086631]
  25. Indian J Tuberc. 2020 Oct;67(4):459-465 [PMID: 33077044]
  26. Lung India. 2017 Nov-Dec;34(6):499-505 [PMID: 29098993]
  27. Clin Pharmacol Ther. 2024 Feb;115(2):324-332 [PMID: 37983978]
  28. BMJ Open Respir Res. 2023 May;10(1): [PMID: 37197794]
  29. J Clin Microbiol. 2021 Feb 18;59(3): [PMID: 33298611]
  30. J Infect Dis. 2010 Apr 15;201(8):1225-31 [PMID: 20210628]
  31. Tuber Lung Dis. 1998;79(1):3-29 [PMID: 10645439]
  32. BMC Infect Dis. 2018 May 22;18(1):234 [PMID: 29788948]
  33. J Antibiot (Tokyo). 2015 Jul;68(7):431-5 [PMID: 25690361]
  34. Curr Pharm Des. 2011;17(13):1291-302 [PMID: 21470111]
  35. Antimicrob Agents Chemother. 2017 Jan 24;61(2): [PMID: 27895017]
  36. Front Microbiol. 2018 Sep 25;9:2224 [PMID: 30319564]
  37. Lancet Respir Med. 2024 Feb;12(2):117-128 [PMID: 37980911]
  38. Microbiol Spectr. 2024 Jan 11;12(1):e0251023 [PMID: 38047702]
  39. Lancet Infect Dis. 2022 Jan;22(1):e2-e12 [PMID: 34506734]
  40. PLoS One. 2019 Nov 12;14(11):e0225205 [PMID: 31714934]
  41. J Clin Microbiol. 2016 Jun;54(6):1624-1630 [PMID: 27076658]
  42. Sci Rep. 2016 May 06;6:25330 [PMID: 27149911]
  43. J Clin Tuberc Other Mycobact Dis. 2022 Feb 22;27:100302 [PMID: 35243009]
  44. Am J Respir Crit Care Med. 2015 Jul 15;192(2):229-37 [PMID: 25915791]
  45. Sci Rep. 2019 Aug 13;9(1):11760 [PMID: 31409849]
  46. Front Microbiol. 2019 Feb 19;10:216 [PMID: 30837962]
  47. Tuberculosis (Edinb). 2020 Dec;125:101985 [PMID: 32829153]
  48. Eur J Clin Microbiol Infect Dis. 2020 Jul;39(7):1321-1327 [PMID: 32078067]
  49. PLoS One. 2014 Feb 26;9(2):e89612 [PMID: 24586912]
  50. Antimicrob Agents Chemother. 2012 Apr;56(4):1990-6 [PMID: 22290942]
  51. Biochem J. 2002 Oct 1;367(Pt 1):279-85 [PMID: 12057006]
  52. Clin Microbiol Infect. 2003 Nov;9(11):1148-52 [PMID: 14616736]
  53. Sci Rep. 2019 Mar 19;9(1):4842 [PMID: 30890730]
  54. Clin Exp Immunol. 2021 Feb;203(2):281-285 [PMID: 33188532]
  55. Antimicrob Agents Chemother. 2017 Jul 25;61(8): [PMID: 28584158]
  56. Infect Dis Clin North Am. 2019 Dec;33(4):1063-1085 [PMID: 31668191]
  57. Chemotherapy. 2007;53(6):397-401 [PMID: 17934259]
  58. Front Med (Lausanne). 2022 Apr 25;9:899821 [PMID: 35547228]
  59. Int J Infect Dis. 2019 Mar;80S:S62-S67 [PMID: 30685590]
  60. BMC Infect Dis. 2015 Mar 25;15:153 [PMID: 25887373]
  61. Antimicrob Agents Chemother. 2017 Dec 21;62(1): [PMID: 29084743]
  62. Front Microbiol. 2017 Apr 27;8:711 [PMID: 28496433]
  63. Diagn Microbiol Infect Dis. 2017 Dec;89(4):276-281 [PMID: 28974394]
  64. Tuberculosis (Edinb). 2006 May-Jul;86(3-4):273-89 [PMID: 16545981]
  65. J Clin Tuberc Other Mycobact Dis. 2024 May 04;36:100451 [PMID: 38764556]
  66. J Microbiol Methods. 2020 Jul;174:105960 [PMID: 32442656]
  67. Infect Drug Resist. 2017 Dec 06;10:463-467 [PMID: 29263682]
  68. PLoS One. 2016 Mar 02;11(3):e0150321 [PMID: 26934724]
  69. J Antimicrob Chemother. 2016 Jan;71(1):17-26 [PMID: 26472768]
  70. Infection. 2004 Apr;32(2):109-11 [PMID: 15057575]
  71. Clin Infect Dis. 2023 Sep 18;77(6):892-900 [PMID: 37227925]
  72. Methods Mol Biol. 2015;1285:281-92 [PMID: 25779323]
  73. Lancet Glob Health. 2022 Jul;10(7):e1034-e1044 [PMID: 35597248]
  74. BMJ. 2019 Oct 24;367:l5894 [PMID: 31649017]
  75. Antimicrob Agents Chemother. 2015 Mar;59(3):1690-5 [PMID: 25583712]
  76. J Microbiol Methods. 2017 Aug;139:168-171 [PMID: 28601653]
  77. PLoS One. 2016 Dec 28;11(12):e0169188 [PMID: 28030634]
  78. Eur J Clin Microbiol Infect Dis. 2005 Dec;24(12):856-7 [PMID: 16315010]
  79. BMC Microbiol. 2014 Oct 07;14:259 [PMID: 25287132]
  80. N Engl J Med. 2022 Sep 1;387(9):810-823 [PMID: 36053506]
  81. PLoS One. 2020 Mar 9;15(3):e0228312 [PMID: 32150745]
  82. Lancet Infect Dis. 2022 Apr;22(4):442-444 [PMID: 35248166]
  83. PLoS One. 2018 Jul 5;13(7):e0199869 [PMID: 29975759]
  84. Indian J Med Res. 2011 May;133:535-40 [PMID: 21623040]
  85. Biochim Biophys Acta. 2009 May;1794(5):763-8 [PMID: 19100867]
  86. J Intern Med. 2015 Apr;277(4):388-405 [PMID: 24809736]
  87. J Clin Microbiol. 2016 Apr;54(4):1051-7 [PMID: 26865685]
  88. Antimicrob Agents Chemother. 2017 Dec 21;62(1): [PMID: 29038265]
  89. Mol Ther. 2016 Feb;24(2):398-405 [PMID: 26643797]
  90. Clin Microbiol Infect. 2024 Feb;30(2):189-196 [PMID: 37741621]
  91. Microb Drug Resist. 2008 Mar;14(1):7-11 [PMID: 18321205]
  92. Int Rev Immunol. 2023;42(1):43-70 [PMID: 34678117]
  93. J Infect Dis. 2018 Aug 14;218(6):1000-1008 [PMID: 29767733]
  94. Vaccines (Basel). 2023 Jul 31;11(8): [PMID: 37631874]
  95. Clin Infect Dis. 2020 Oct 23;71(7):1627-1634 [PMID: 32044987]
  96. Mol Ther. 2016 Feb;24(2):201-203 [PMID: 26906614]
  97. Antimicrob Agents Chemother. 2008 Aug;52(8):2947-9 [PMID: 18541729]
  98. Am J Respir Crit Care Med. 1996 Jan;153(1):331-5 [PMID: 8542139]
  99. Int J Tuberc Lung Dis. 2014 Nov;18(11):1292-8 [PMID: 25299860]
  100. Microbiol Rev. 1996 Dec;60(4):575-608 [PMID: 8987357]
  101. PLoS One. 2015 Mar 23;10(3):e0119628 [PMID: 25799046]
  102. J Clin Microbiol. 2004 Mar;42(3):1109-14 [PMID: 15004061]
  103. Int J Mycobacteriol. 2016 Dec;5 Suppl 1:S150 [PMID: 28043519]
  104. Int J Infect Dis. 2020 Mar;92S:S15-S25 [PMID: 32032752]
  105. Cochrane Database Syst Rev. 2016 Sep 08;9:CD010705 [PMID: 27605387]
  106. Biomed Res Int. 2015;2015:951706 [PMID: 26417605]
  107. Clin Microbiol Rev. 2011 Apr;24(2):314-50 [PMID: 21482728]
  108. Eur Respir J. 2022 Oct 13;60(4): [PMID: 35301246]
  109. J Clin Microbiol. 2020 Sep 22;58(10): [PMID: 32759357]
  110. Infect Drug Resist. 2017 Jun 14;10:185-192 [PMID: 28652786]
  111. Open Forum Infect Dis. 2023 Feb 21;10(3):ofad087 [PMID: 36910692]
  112. Front Microbiol. 2019 Apr 16;10:794 [PMID: 31057511]

Word Cloud

Created with Highcharts 10.0.0TBMDR/XDR-TBtuberculosisdrugdueBCGdiseasecontrolMDR-TBdrug-resistantXDR-TBhightreatmentlimitationsclosecontactsMtbcasecurrentglobaldiagnosisopportunitiesTuberculosisworld'ssecond-deadliestinfectiousDespiteavailabilitydrugscurehamperedemergencemultidrug-resistantextensivelypresencealarminglowdetectionratefailuremortalityincreasingcasesmainlydiagnostictestsdetectsusceptibilitypathogencontributespreadMoreoverinconsistenttherapyunsuitableregimensalsoleadsubsequentdevelopmentresistanceindexpatientincreasedriskdevelopingAlsovaccinemayexhibitvaryingprotectiveeffectsstraindiversificationhostimmunestatusexposureenvironmentalnon-tuberculousmycobacteriaNTMdifferencessubspeciesinfectionsub-optimalprotectionBeijingfamilygenotypesreviewprovidesoverviewstateDR-TBwithincontextpandemicfocuspotentialimpactvaccinationhighlightsapproachesaimsidentifyimprovingstrategiesImpactsepidemic:ChallengesTreatmentVaccine

Similar Articles

Cited By