Influence of reef habitat on coral microbial associations.

Shelby E Gantt, Keri M Kemp, Patrick L Colin, Kenneth D Hoadley, Todd C LaJeunesse, Mark E Warner, Dustin W Kemp
Author Information
  1. Shelby E Gantt: Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA. ORCID
  2. Keri M Kemp: Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA. ORCID
  3. Patrick L Colin: Coral Reef Research Foundation, Koror, Palau, Micronesia. ORCID
  4. Kenneth D Hoadley: Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA. ORCID
  5. Todd C LaJeunesse: Department of Biology, Pennsylvania State University, State College, Pennsylvania, USA. ORCID
  6. Mark E Warner: School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA. ORCID
  7. Dustin W Kemp: Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA. ORCID

Abstract

Corals have complex symbiotic associations that can be influenced by the environment. We compare symbiotic dinoflagellate (family: Symbiodiniaceae) associations and the microbiome of five scleractinian coral species from three different reef habitats in Palau, Micronesia. Although pH and temperature corresponded with specific host-Symbiodiniaceae associations common to the nearshore and offshore habitats, bacterial community dissimilarity analyses indicated minimal influence of these factors on microbial community membership for the corals Coelastrea aspera, Psammocora digitata, and Pachyseris rugosa. However, coral colonies sampled close to human development exhibited greater differences in microbial community diversity compared to the nearshore habitat for the coral species Coelastrea aspera, Montipora foliosa, and Pocillopora acuta, and the offshore habitat for Coelastrea aspera, while also showing less consistency in Symbiodiniaceae associations. These findings indicate the influence that habitat location has on the bacterial and Symbiodiniaceae communities comprising the coral holobiont and provide important considerations for the conservation of coral reef communities, especially for island nations with increasing human populations and development.

References

  1. ISME J. 2013 May;7(5):980-90 [PMID: 23254513]
  2. Trends Microbiol. 2024 May;32(5):422-434 [PMID: 38216372]
  3. ISME J. 2021 Nov;15(11):3271-3285 [PMID: 34012104]
  4. Front Microbiol. 2016 Mar 24;7:371 [PMID: 27047481]
  5. Adv Microb Physiol. 2012;60:211-62 [PMID: 22633060]
  6. Microbiol Spectr. 2015 Aug;3(4): [PMID: 26350314]
  7. Sci Rep. 2021 May 27;11(1):11192 [PMID: 34045589]
  8. Mol Ecol Resour. 2009 Jan;9(1):74-82 [PMID: 21564569]
  9. Nat Commun. 2018 Nov 22;9(1):4921 [PMID: 30467310]
  10. F1000Res. 2016 Jun 24;5:1492 [PMID: 27508062]
  11. Genom Data. 2016 Dec 15;11:73-74 [PMID: 28018855]
  12. Mol Ecol. 2014 Feb;23(4):965-74 [PMID: 24350609]
  13. ISME J. 2015 Sep;9(9):1916-27 [PMID: 25668159]
  14. Sci Rep. 2023 Jan 24;13(1):1355 [PMID: 36693980]
  15. Nat Commun. 2022 Jan 17;13(1):342 [PMID: 35039521]
  16. ISME J. 2020 Oct;14(10):2424-2432 [PMID: 32518247]
  17. ISME J. 2021 Jul;15(7):2028-2042 [PMID: 33558689]
  18. Am J Physiol Regul Integr Comp Physiol. 2021 May 1;320(5):R663-R674 [PMID: 33655759]
  19. ISME J. 2019 Jun;13(6):1635-1638 [PMID: 30705413]
  20. FASEB J. 2010 Jun;24(6):1935-46 [PMID: 20124432]
  21. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  22. Proc Biol Sci. 2023 Sep 27;290(2007):20231403 [PMID: 37727091]
  23. Nature. 2018 Apr;556(7702):492-496 [PMID: 29670282]
  24. Sci Adv. 2023 May 19;9(20):eadg0773 [PMID: 37196086]
  25. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  26. Science. 2023 Dec 15;382(6676):1238-1240 [PMID: 38060674]
  27. Environ Microbiol. 2009 Aug;11(8):2148-63 [PMID: 19397678]
  28. Sci Rep. 2019 Jul 10;9(1):9985 [PMID: 31292499]
  29. PLoS One. 2013 Dec 31;8(12):e83746 [PMID: 24391819]
  30. PLoS Comput Biol. 2021 Nov 16;17(11):e1009442 [PMID: 34784344]
  31. Ecol Evol. 2018 Jan 25;8(4):2240-2252 [PMID: 29468040]
  32. Environ Microbiol. 2020 Nov;22(11):4689-4701 [PMID: 32840026]
  33. Curr Biol. 2020 Oct 5;30(19):R1110-R1113 [PMID: 33022248]
  34. Nat Rev Microbiol. 2020 Oct;18(10):546-558 [PMID: 32483324]
  35. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4516-22 [PMID: 20534432]
  36. mBio. 2018 Oct 9;9(5): [PMID: 30301849]
  37. FEMS Microbiol Ecol. 2009 May;68(2):152-63 [PMID: 19302548]
  38. ISME J. 2012 Sep;6(9):1775-85 [PMID: 22437157]
  39. Glob Chang Biol. 2021 Oct;27(20):5295-5309 [PMID: 34255912]
  40. ISME J. 2019 Nov;13(11):2882-2886 [PMID: 31249389]
  41. Nat Commun. 2023 Jun 1;14(1):3037 [PMID: 37264015]
  42. Proc Natl Acad Sci U S A. 2003 Jul 8;100(14):8298-303 [PMID: 12835416]
  43. PLoS One. 2010 Mar 05;5(3):e9554 [PMID: 20221265]
  44. Proc Biol Sci. 2008 Oct 7;275(1648):2273-82 [PMID: 18577506]
  45. PLoS One. 2010 May 27;5(5):e10871 [PMID: 20523735]
  46. J Phycol. 2023 Aug;59(4):698-711 [PMID: 37126002]
  47. Int J Syst Bacteriol. 1998 Oct;48 Pt 4:1277-90 [PMID: 9828428]
  48. J Microbiol Methods. 2021 Aug;187:106277 [PMID: 34237402]
  49. Environ Microbiol. 2021 Feb;23(2):826-843 [PMID: 32686311]
  50. Nat Commun. 2017 Feb 10;8:14213 [PMID: 28186132]
  51. FEMS Microbiol Lett. 2017 Sep 1;364(16): [PMID: 28873945]
  52. ISME J. 2013 Jul;7(7):1452-8 [PMID: 23303372]
  53. ISME J. 2015 Oct;9(10):2261-74 [PMID: 25885563]
  54. Annu Rev Microbiol. 2016 Sep 8;70:317-40 [PMID: 27482741]
  55. Nature. 1999 Jul 29;400(6743):446-9 [PMID: 10440372]
  56. Ecol Evol. 2012 Oct;2(10):2474-84 [PMID: 23145333]
  57. Environ Microbiol Rep. 2011 Dec;3(6):651-60 [PMID: 23761353]
  58. Annu Rev Microbiol. 2004;58:143-59 [PMID: 15487933]
  59. ISME J. 2024 Jan 8;18(1): [PMID: 38365239]
  60. Trends Microbiol. 2009 Dec;17(12):554-62 [PMID: 19822428]
  61. Mar Pollut Bull. 2016 Apr 30;105(2):629-40 [PMID: 26763316]
  62. Proc Biol Sci. 2022 Jan 26;289(1967):20212459 [PMID: 35042418]
  63. ISME J. 2015 Mar 17;9(4):894-908 [PMID: 25325380]
  64. Sci Adv. 2015 Jun 05;1(5):e1500328 [PMID: 26601203]
  65. mSystems. 2021 Aug 31;6(4):e0038321 [PMID: 34282940]
  66. Proc Biol Sci. 2023 Jul 26;290(2003):20231021 [PMID: 37465983]
  67. Microbiome. 2021 May 21;9(1):118 [PMID: 34020712]
  68. Appl Environ Microbiol. 2021 Apr 13;87(9): [PMID: 33674432]

Grants

  1. /University of Alabama at Birmingham
  2. IOS-1258058/National Science Foundation
  3. IOS-1258065/National Science Foundation
  4. IOS-1719675/National Science Foundation
  5. OCE-1635695/National Science Foundation
  6. OCE-1636022/National Science Foundation
  7. OCE-1719684/National Science Foundation

MeSH Term

Anthozoa
Animals
Coral Reefs
Symbiosis
Dinoflagellida
Microbiota
Bacteria
Ecosystem
Palau

Word Cloud

Created with Highcharts 10.0.0coralassociationshabitatSymbiodiniaceaereefcommunitymicrobialCoelastreaasperasymbioticspecieshabitatsnearshoreoffshorebacterialinfluencehumandevelopmentcommunitiesCoralscomplexcaninfluencedenvironmentcomparedinoflagellatefamily:microbiomefivescleractinianthreedifferentPalauMicronesiaAlthoughpHtemperaturecorrespondedspecifichost-SymbiodiniaceaecommondissimilarityanalysesindicatedminimalfactorsmembershipcoralsPsammocoradigitataPachyserisrugosaHowevercoloniessampledcloseexhibitedgreaterdifferencesdiversitycomparedMontiporafoliosaPocilloporaacutaalsoshowinglessconsistencyfindingsindicatelocationcomprisingholobiontprovideimportantconsiderationsconservationespeciallyislandnationsincreasingpopulationsInfluence

Similar Articles

Cited By

No available data.