Simultaneous Quantification of 66 Compounds in Two Tibetan Species Reveals Four Chemical Features by Database-Enabled UHPLC-Q-Orbitrap-MS/MS Analysis.

Zhouli Xu, Rongxin Cai, Hanxiao Chai, Shaoman Chen, Yongbai Liang, Xican Li, Guihua Jiang
Author Information
  1. Zhouli Xu: State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
  2. Rongxin Cai: State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. ORCID
  3. Hanxiao Chai: School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
  4. Shaoman Chen: School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
  5. Yongbai Liang: School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
  6. Xican Li: School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China. ORCID
  7. Guihua Jiang: State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.

Abstract

Nannf. (CoC) and Nannf. (CoN) are two traditional Tibetan medicinal herbs (Zangdangshen), which have been widely used in the treatment of various diseases. In this study, their aerial and underground parts were systematically analyzed using database-enabled UHPLC-Q-Orbitrap-MS/MS technology. This technology introduced three adduct ions, [M - H], [M + H], and [M + NH], to putatively identify a total of 66 compounds. During the putative identification, at least 16 isomers were successfully differentiated, such as isochlorogenic acid A vs. isochlorogenic acid B vs. isochlorogenic acid C. Thereafter, all these identified compounds were further quantified for their contents based on a linear regression method. Their contents were observed to vary from 0.00 to 39,127.03 µg/g. Through multiple comparisons of these quantification results, the study found the following four chemical features: (1) Four sesquiterpenes (especially atractylenolide III) enriched mainly in CoC and rarely in CoN; (2) four quinic acid derivatives were abundant in the aerial part of two species; (3) sixteen flavonoids (particularly diosmetin and chrysoeriol) showed higher content in CoC than in CoN; and (4) lobetyolin was ubiquitously distributed in four parts of both CoC and CoN. Based on these features and the relevant principles, four compounds (lobetyolin, atractylenolide III, diosmetin, and chrysoeriol) are recommended as the quality markers of two Tibetan species. All these findings can facilitate the sustainable development and quality control of the two traditional Tibetan medicinal herbs.

Keywords

References

  1. Basic Clin Pharmacol Toxicol. 2023 Mar;132(3):253-262 [PMID: 36507595]
  2. Food Chem. 2022 Jul 30;383:132531 [PMID: 35413752]
  3. Nutrients. 2023 Jan 01;15(1): [PMID: 36615882]
  4. J Cancer Res Clin Oncol. 2023 Jul;149(7):3313-3323 [PMID: 35931788]
  5. J Nat Med. 2015 Jan;69(1):1-21 [PMID: 25099952]
  6. Neuropharmacology. 2024 May 15;249:109868 [PMID: 38403263]
  7. Life Sci. 2015 Jun 1;130:25-30 [PMID: 25818191]
  8. Int Immunopharmacol. 2023 Jan;114:109616 [PMID: 36700780]
  9. J Microbiol Biotechnol. 2024 Apr 28;34(4):911-919 [PMID: 38379292]
  10. Int J Mol Sci. 2022 Jul 30;23(15): [PMID: 35955606]
  11. J Pharm Biomed Anal. 2023 Jan 20;223:115140 [PMID: 36356406]
  12. J Pharm Biomed Anal. 2024 Apr 15;241:115983 [PMID: 38301575]
  13. Biomed Pharmacother. 2020 Sep;129:110474 [PMID: 32768959]
  14. Biomed Pharmacother. 2022 Sep;153:113358 [PMID: 35785699]
  15. Nutrients. 2023 Dec 01;15(23): [PMID: 38068849]
  16. J Plant Physiol. 2021 Dec;267:153546 [PMID: 34736004]
  17. Molecules. 2021 Jan 09;26(2): [PMID: 33435366]
  18. PLoS One. 2020 Sep 3;15(9):e0238381 [PMID: 32881942]
  19. Saudi J Biol Sci. 2018 Mar;25(3):520-528 [PMID: 29692653]
  20. Food Chem. 2013 Dec 1;141(3):2083-8 [PMID: 23870931]
  21. Life Sci. 2021 Dec 1;286:120046 [PMID: 34653428]
  22. Molecules. 2024 Mar 20;29(6): [PMID: 38543029]
  23. Toxins (Basel). 2015 Jan 09;7(1):81-96 [PMID: 25584429]
  24. Life Sci. 2023 Nov 1;332:122096 [PMID: 37716503]
  25. Phytother Res. 2022 Mar;36(3):1268-1283 [PMID: 35084790]
  26. Food Chem. 2017 Oct 1;232:67-78 [PMID: 28490126]
  27. J Ethnopharmacol. 2014 Feb 3;151(2):897-902 [PMID: 24333960]
  28. Front Endocrinol (Lausanne). 2023 Jul 18;14:1200391 [PMID: 37534214]
  29. Biomed Pharmacother. 2021 Sep;141:111795 [PMID: 34098217]
  30. J Agric Food Chem. 2020 Sep 30;68(39):10489-10516 [PMID: 32846084]
  31. Zhongguo Zhong Yao Za Zhi. 2022 Nov;47(22):6164-6174 [PMID: 36471941]
  32. J Agric Food Chem. 2017 Aug 2;65(30):6288-6297 [PMID: 28689421]
  33. Food Res Int. 2022 May;155:111095 [PMID: 35400467]
  34. Ren Fail. 2024 Dec;46(1):2344656 [PMID: 38685608]
  35. Front Pharmacol. 2020 Jan 17;10:1505 [PMID: 32038231]
  36. J Microbiol Immunol Infect. 2021 Apr;54(2):213-220 [PMID: 31324551]
  37. Biochem Biophys Res Commun. 2018 Oct 12;504(4):812-819 [PMID: 30217455]
  38. Front Immunol. 2021 Jul 22;12:656573 [PMID: 34367129]
  39. Sci Rep. 2023 Apr 5;13(1):5595 [PMID: 37019901]
  40. Biomed Pharmacother. 2016 Jul;81:120-127 [PMID: 27261585]
  41. Environ Sci Technol. 2014 Feb 18;48(4):2097-8 [PMID: 24476540]
  42. Biomed Pharmacother. 2017 Dec;96:563-571 [PMID: 29032340]
  43. Mol Plant Microbe Interact. 2011 Aug;24(8):948-57 [PMID: 21539432]
  44. Food Chem. 2019 Jan 30;272:192-200 [PMID: 30309532]
  45. Int Immunopharmacol. 2020 Mar 3;82:106353 [PMID: 32143007]
  46. J Agric Food Chem. 2022 Jul 6;70(26):7953-7967 [PMID: 35729734]
  47. Phytochem Anal. 2024 Mar;35(2):220-238 [PMID: 37735858]
  48. Environ Toxicol. 2023 Sep;38(9):2132-2142 [PMID: 37209277]

Grants

  1. 82374485/National Natural Science Foundation of China
  2. 82173928/National Natural Science Foundation of China
  3. 2024NSFSC0704/Sichuan Provincial Natural Science Foundation Project

MeSH Term

Codonopsis
Chromatography, High Pressure Liquid
Tandem Mass Spectrometry
Plant Extracts
Tibet
Plants, Medicinal

Chemicals

Plant Extracts

Word Cloud

Created with Highcharts 10.0.0fourNannfCoCCoNtwoTibetanacidUHPLC-Q-Orbitrap-MS/MS[McompoundsisochlorogenicqualitytraditionalmedicinalherbsstudyaerialpartstechnologyH]+66vscontentsquantificationchemicalFouratractylenolideIIIspeciesdiosmetinchrysoeriollobetyolinfeaturesCodonopsisZangdangshenwidelyusedtreatmentvariousdiseasesundergroundsystematicallyanalyzedusingdatabase-enabledintroducedthreeadductions-NH]putativelyidentifytotalputativeidentificationleast16isomerssuccessfullydifferentiatedBCThereafteridentifiedquantifiedbasedlinearregressionmethodobservedvary0003912703µg/gmultiplecomparisonsresultsfoundfollowingfeatures:1sesquiterpenesespeciallyenrichedmainlyrarely2quinicderivativesabundantpart3sixteenflavonoidsparticularlyshowedhighercontent4ubiquitouslydistributedBasedrelevantprinciplesrecommendedmarkersfindingscanfacilitatesustainabledevelopmentcontrolSimultaneousQuantificationCompoundsTwoSpeciesRevealsChemicalFeaturesDatabase-EnabledAnalysiscanescensnervosamarkersimultaneous

Similar Articles

Cited By