A nearly gapless, highly contiguous reference genome for a doubled haploid line of , enabling advanced genomic studies.

Wenxuan Liu, Caixia Liu, Song Chen, Meng Wang, Xinyu Wang, Yue Yu, Ronald R Sederoff, Hairong Wei, Xiangling You, Guanzheng Qu, Su Chen
Author Information
  1. Wenxuan Liu: State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
  2. Caixia Liu: State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China. ORCID
  3. Song Chen: State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
  4. Meng Wang: State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
  5. Xinyu Wang: State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
  6. Yue Yu: State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
  7. Ronald R Sederoff: State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
  8. Hairong Wei: College of Forest Resources and Environmental Science, Michigan Technological University, MI 49931, USA. ORCID
  9. Xiangling You: Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
  10. Guanzheng Qu: State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
  11. Su Chen: State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.

Abstract

species, particularly , have long served as model trees for genomics research, owing to fully sequenced genomes. However, the high heterozygosity, and the presence of repetitive regions, including centromeres and ribosomal RNA gene clusters, have left 59 unresolved gaps, accounting for approximately 3.32% of the genome. In this study, the callus induction method was improved to derive a doubled haploid (DH) callus line from anthers. Leveraging long-read sequencing, we successfully assembled a nearly gap-free, telomere-to-telomere (T2T) genome spanning 412.13 Mb. This genome assembly contains only seven gaps and has a contig N50 length of 19.50 Mb. Annotation revealed 34,953 protein-coding genes in this genome, which is 465 more than that of . Notably, centromeric regions are characterized by higher-order repeats, we identified and annotated centromere regions in all DH genome chromosomes, a first for poplars. The derived DH genome exhibits high collinearity with and significantly fills gaps present in the latter's genome. This T2T reference genome will not only enhance our understanding of genome structure, and functions within the poplar genus but also provides valuable resources for poplar genomic and evolutionary studies.

Keywords

References

  1. Hortic Res. 2023 Apr 04;10(5):uhad061 [PMID: 37213686]
  2. Bioinformatics. 2003 Jan 22;19(2):301-2 [PMID: 12538260]
  3. Trends Cell Biol. 2011 Mar;21(3):133-40 [PMID: 21106376]
  4. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  5. Science. 1998 Oct 23;282(5389):662, 679-82 [PMID: 9784120]
  6. Commun Biol. 2019 Jun 18;2:215 [PMID: 31240253]
  7. Nat Biotechnol. 2021 Nov;39(11):1348-1365 [PMID: 34750572]
  8. Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:4.10.1-4.10.14 [PMID: 19274634]
  9. Exp Cell Res. 2020 Sep 15;394(2):112127 [PMID: 32504677]
  10. Nat Genet. 2017 Jul;49(7):1099-1106 [PMID: 28581499]
  11. Mol Ecol Resour. 2020 May;20(3): [PMID: 32034885]
  12. Plant Biotechnol J. 2022 Feb;20(2):250-252 [PMID: 34850529]
  13. G3 (Bethesda). 2020 Feb 6;10(2):455-466 [PMID: 31806765]
  14. Nature. 2000 Dec 14;408(6814):796-815 [PMID: 11130711]
  15. Plant Biotechnol J. 2022 Aug;20(8):1561-1577 [PMID: 35514032]
  16. Science. 2009 Oct 9;326(5950):289-93 [PMID: 19815776]
  17. Genes (Basel). 2018 Oct 01;9(10): [PMID: 30275397]
  18. Plant Cell. 2002 Nov;14(11):2651-5 [PMID: 12417692]
  19. Nat Plants. 2019 Aug;5(8):833-845 [PMID: 31383970]
  20. Nucleic Acids Res. 2012 Apr;40(7):e49 [PMID: 22217600]
  21. Mol Plant. 2021 Oct 4;14(10):1757-1767 [PMID: 34171480]
  22. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  23. Mol Ecol Resour. 2023 Jul;23(5):1092-1107 [PMID: 36789493]
  24. Science. 2002 Apr 5;296(5565):92-100 [PMID: 11935018]
  25. Nat Plants. 2021 Sep;7(9):1239-1253 [PMID: 34475528]
  26. Science. 2021 Nov 12;374(6569):eabi7489 [PMID: 34762468]
  27. Mol Ecol Resour. 2022 Feb;22(2):786-802 [PMID: 34549890]
  28. Trends Plant Sci. 2004 Jan;9(1):49-56 [PMID: 14729219]
  29. Genome Biol. 2019 Dec 16;20(1):277 [PMID: 31842948]
  30. Genome Res. 2008 Jan;18(1):13-8 [PMID: 18025267]
  31. BMC Plant Biol. 2018 Oct 26;18(1):256 [PMID: 30367626]
  32. Nucleic Acids Res. 2003 Oct 1;31(19):5654-66 [PMID: 14500829]
  33. Indian J Microbiol. 2016 Dec;56(4):394-404 [PMID: 27784934]
  34. Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9451-9457 [PMID: 32300014]
  35. Bioinformatics. 2019 Nov 1;35(21):4453-4455 [PMID: 31070718]
  36. Plant J. 2020 Jul;103(1):430-442 [PMID: 32168389]
  37. Genomics Proteomics Bioinformatics. 2006 Nov;4(4):259-63 [PMID: 17531802]
  38. Plant Cell. 2022 Jul 4;34(7):2492-2504 [PMID: 35511166]
  39. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  40. Bioinformatics. 2021 Jul 12;37(Suppl_1):i196-i204 [PMID: 34252949]
  41. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  42. Science. 2006 Sep 15;313(5793):1596-604 [PMID: 16973872]
  43. Nat Methods. 2015 Aug;12(8):780-6 [PMID: 26121404]
  44. PLoS Comput Biol. 2018 Jan 26;14(1):e1005944 [PMID: 29373581]
  45. Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):E10970-E10978 [PMID: 30373829]
  46. Plant Biotechnol J. 2019 Feb;17(2):451-460 [PMID: 30044051]
  47. Plant J. 2020 Jan;101(2):253-264 [PMID: 31529535]
  48. Am J Bot. 1986 Jan;73(1):156-160 [PMID: 30139119]
  49. Plant Biotechnol J. 2022 Dec;20(12):2242-2244 [PMID: 36161449]
  50. Genome Biol. 2008 Jan 11;9(1):R7 [PMID: 18190707]
  51. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W265-8 [PMID: 17485477]
  52. Gigascience. 2017 Sep 1;6(9):1-7 [PMID: 28938721]
  53. Genome Biol. 2023 Mar 28;24(1):58 [PMID: 36978122]
  54. Hortic Res. 2023 Jun 13;10(8):uhad127 [PMID: 37560017]
  55. Bioinformatics. 2022 May 13;38(10):2922-2926 [PMID: 35561173]

Word Cloud

Similar Articles

Cited By