Effects of nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge: A comprehensive review.

Alfonz Kedves, Zoltán Kónya
Author Information
  1. Alfonz Kedves: Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary.
  2. Zoltán Kónya: Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary.

Abstract

Nanoparticles (NPs) are of significant interest due to their unique properties, such as large surface area and high reactivity, which have facilitated advancements in various fields. However, their increased use raises concerns about environmental impacts, including on wastewater treatment processes. This review examines the effects of different nanoparticles on anaerobic, anammox, aerobic, and algal-bacterial granular sludge used in wastewater treatment. CeO and Ag NPs demonstrated adverse effects on aerobic granular sludge (AGS), reducing nutrient removal and cellular function, while anaerobic granular sludge (AnGS) and anammox granular sludge (AxGS) showed greater resilience due to their higher extracellular polymeric substance (EPS) content. TiO NPs had fewer negative effects on algal-bacterial granular sludge (ABGS) than on AGS, as algae played a crucial role in enhancing EPS production and stabilizing the granules. The addition of FeO NPs significantly enhanced both aerobic and anammox granulation by reducing granulation time, promoting microbial interactions, improving granule stability, and increasing nitrogen removal efficiency, primarily through increased EPS production and enzyme activity. However, Cu and CuO NPs exhibited strong inhibitory effects on aerobic, anammox, and anaerobic systems, affecting EPS structure, cellular integrity, and microbial viability. ZnO NPs demonstrated dose-dependent toxicity, with higher concentrations inducing oxidative stress and reducing performance in AGS and AnGS, whereas AxGS and ABGS were more tolerant due to enhanced EPS production and algae-mediated protection. The existing knowledge gaps and directions for future research on NPs are identified and discussed.

Keywords

References

  1. Environ Pollut. 2019 Aug;251:166-174 [PMID: 31078088]
  2. Molecules. 2023 Aug 10;28(16): [PMID: 37630256]
  3. Biomater Res. 2020 Jun 3;24:11 [PMID: 32514371]
  4. Environ Sci Technol. 2008 Jun 15;42(12):4447-53 [PMID: 18605569]
  5. Sci Total Environ. 2020 Oct 1;737:139734 [PMID: 32526572]
  6. Bioresour Technol. 2017 Mar;227:44-49 [PMID: 28013135]
  7. Sci Total Environ. 2023 Dec 1;902:166398 [PMID: 37604370]
  8. Water Res. 2017 Dec 15;127:32-40 [PMID: 29031797]
  9. J Hazard Mater. 2021 Sep 15;418:126342 [PMID: 34329001]
  10. Int J Environ Res Public Health. 2022 Apr 28;19(9): [PMID: 35564766]
  11. Nanoscale. 2020 Jan 28;12(4):2268-2291 [PMID: 31942896]
  12. Ecotoxicol Environ Saf. 2018 Jul 30;156:287-293 [PMID: 29567509]
  13. Bioresour Technol. 2022 Dec;365:128165 [PMID: 36283664]
  14. Bioresour Technol. 2020 Mar;300:122751 [PMID: 31956059]
  15. Nanomaterials (Basel). 2020 May 20;10(5): [PMID: 32443655]
  16. J Environ Sci Health B. 2022;57(12):932-947 [PMID: 36469565]
  17. Sci Rep. 2023 Feb 27;13(1):3323 [PMID: 36849795]
  18. Int J Pharm. 2020 Aug 30;586:119531 [PMID: 32540348]
  19. Ecotoxicol Environ Saf. 2021 Apr 15;213:112027 [PMID: 33578100]
  20. Heliyon. 2022 Jul 03;8(7):e09844 [PMID: 35815122]
  21. Chemosphere. 2023 Jan;312(Pt 1):137254 [PMID: 36395892]
  22. Bioresour Technol. 2020 Feb 24;305:123084 [PMID: 32135348]
  23. J Environ Manage. 2022 Mar 1;305:114254 [PMID: 34972048]
  24. Water Sci Technol. 2023 Jun;87(12):3002-3016 [PMID: 37387426]
  25. Bioresour Technol. 2023 Feb;369:128442 [PMID: 36470490]
  26. Bioresour Technol. 2019 Oct;289:121707 [PMID: 31271915]
  27. Environ Sci Technol. 2017 Sep 19;51(18):10503-10510 [PMID: 28832135]
  28. J Environ Manage. 2020 Aug 15;268:110718 [PMID: 32510449]
  29. J Environ Manage. 2021 Oct 15;296:113214 [PMID: 34252851]
  30. J Adv Res. 2021 Jan 05;31:113-126 [PMID: 34194836]
  31. Talanta. 2021 Jun 1;228:122075 [PMID: 33773704]
  32. Sci Total Environ. 2015 Feb 15;506-507:226-33 [PMID: 25460955]
  33. J Hazard Mater. 2018 May 5;349:135-142 [PMID: 29414745]
  34. Biofilm. 2020 Jun 08;2:100029 [PMID: 33447814]
  35. Biofilm. 2022 Oct 28;4:100091 [PMID: 36389262]
  36. Adv Colloid Interface Sci. 2020 Oct;284:102246 [PMID: 32977142]
  37. Chemosphere. 2021 Nov;282:131027 [PMID: 34098308]
  38. Water Res. 2021 Feb 1;189:116603 [PMID: 33189972]
  39. Mar Environ Res. 2023 Jan;183:105805 [PMID: 36375224]
  40. Bioresour Technol. 2018 Oct;266:507-515 [PMID: 30005413]
  41. Pharmaceutics. 2023 Jan 19;15(2): [PMID: 36839659]
  42. Nanoscale Adv. 2023 Dec 6;6(2):578-589 [PMID: 38235078]
  43. Bioresour Technol. 2024 Feb;393:130174 [PMID: 38072081]
  44. J Environ Manage. 2023 Jan 15;326(Pt A):116540 [PMID: 36427360]
  45. J Hazard Mater. 2017 Jul 15;334:49-58 [PMID: 28399429]
  46. J Environ Manage. 2020 May 15;262:110245 [PMID: 32090890]
  47. Small. 2022 Jan;18(1):e2101638 [PMID: 34396695]
  48. Biofilm. 2023 Jul 15;6:100140 [PMID: 38078057]
  49. Chemosphere. 2022 Nov;307(Pt 2):135677 [PMID: 35843432]
  50. Environ Sci Technol. 2007 Jun 1;41(11):4158-63 [PMID: 17612205]
  51. Biofilm. 2024 Mar 15;7:100192 [PMID: 38544742]
  52. Nanomaterials (Basel). 2021 Oct 27;11(11): [PMID: 34835628]
  53. Chemosphere. 2019 May;223:148-156 [PMID: 30772594]
  54. Sci Total Environ. 2021 Dec 10;799:149449 [PMID: 34371406]
  55. Colloids Surf B Biointerfaces. 2021 Mar;199:111509 [PMID: 33340933]
  56. ACS Omega. 2021 Mar 31;6(14):9344-9351 [PMID: 33869914]
  57. Bioresour Technol. 2017 Aug;238:361-368 [PMID: 28456044]
  58. Langmuir. 2022 Mar 29;38(12):3804-3816 [PMID: 35294836]
  59. Bioresour Technol. 2017 Aug;238:95-101 [PMID: 28433918]
  60. Appl Sci (Basel). 2021 Dec;11(23): [PMID: 35844268]
  61. Sci Total Environ. 2019 Feb 1;649:440-447 [PMID: 30176457]
  62. Chemosphere. 2021 Oct;281:130865 [PMID: 34015654]
  63. Water Res. 2020 Jul 15;179:115884 [PMID: 32388049]
  64. ACS Nano. 2020 Mar 24;14(3):2585-2627 [PMID: 32031781]
  65. Bioresour Technol. 2020 Sep;312:123608 [PMID: 32531736]
  66. RSC Adv. 2021 May 24;11(30):18539-18551 [PMID: 35480950]
  67. Chemosphere. 2022 Sep;303(Pt 2):135116 [PMID: 35623422]
  68. Int J Environ Res Public Health. 2019 Sep 26;16(19): [PMID: 31561526]
  69. Bioresour Technol. 2013 Dec;149:346-52 [PMID: 24128396]
  70. J Environ Manage. 2021 Jan 1;277:111495 [PMID: 33069150]
  71. Molecules. 2023 Feb 13;28(4): [PMID: 36838750]
  72. Bioresour Technol. 2020 Jul;307:123264 [PMID: 32244076]
  73. Water Sci Technol. 2010;61(7):1715-22 [PMID: 20371929]
  74. Chemosphere. 2019 Oct;233:625-632 [PMID: 31195266]
  75. J Environ Manage. 2023 Dec 15;348:119323 [PMID: 37852083]
  76. Water Res. 2017 Jun 15;117:87-94 [PMID: 28390238]
  77. Bioresour Technol. 2011 Nov;102(22):10305-11 [PMID: 21925874]
  78. Sci Total Environ. 2020 Jul 20;727:138603 [PMID: 32498210]
  79. Environ Res. 2021 Jan;192:110256 [PMID: 32997970]
  80. Bioresour Technol. 2018 Jan;247:1128-1143 [PMID: 28985995]
  81. Bioresour Technol. 2024 Jun;402:130808 [PMID: 38723724]
  82. Bioresour Technol. 2022 Oct;361:127713 [PMID: 35926556]
  83. Water Res. 2021 Jun 15;198:117159 [PMID: 33962240]
  84. Water Res. 2015 Mar 1;70:1-8 [PMID: 25499894]
  85. J Environ Monit. 2011 May;13(5):1195-203 [PMID: 21494702]
  86. J Environ Manage. 2017 Apr 1;190:35-44 [PMID: 28039817]
  87. Environ Pollut. 2020 Feb;257:113596 [PMID: 31771931]
  88. Bioresour Technol. 2022 Jun;354:127201 [PMID: 35460841]
  89. Bioresour Technol. 2022 May;351:127028 [PMID: 35318147]
  90. Biotechnol Adv. 2008 Sep-Oct;26(5):411-23 [PMID: 18573633]
  91. Bioresour Technol. 2018 Jul;259:10-17 [PMID: 29536867]
  92. J Hazard Mater. 2020 Nov 5;398:122965 [PMID: 32474323]
  93. Biotechnol Rep (Amst). 2019 Nov 22;25:e00402 [PMID: 31871923]
  94. J Hazard Mater. 2020 May 5;389:121905 [PMID: 31874760]
  95. J Hazard Mater. 2016 May 5;308:328-34 [PMID: 26852208]
  96. Water Res. 2023 Jan 1;228(Pt A):119353 [PMID: 36423549]
  97. ACS Omega. 2020 Apr 01;5(14):7861-7876 [PMID: 32309695]
  98. J Environ Manage. 2023 May 1;333:117374 [PMID: 36758398]
  99. Adv Colloid Interface Sci. 2020 Sep;283:102215 [PMID: 32771691]
  100. Bioresour Technol. 2015;187:214-220 [PMID: 25855527]
  101. Water Res. 2020 Nov 1;186:116321 [PMID: 32861184]
  102. Bioresour Technol. 2017 Jun;234:448-455 [PMID: 28347965]
  103. Int J Environ Res Public Health. 2020 Feb 20;17(4): [PMID: 32093364]
  104. Bioresour Technol. 2021 Aug;333:125186 [PMID: 33892423]
  105. J Hazard Mater. 2018 Feb 5;343:200-207 [PMID: 28961500]
  106. J Hazard Mater. 2013 Sep 15;260:278-85 [PMID: 23770618]
  107. Bioresour Technol. 2018 Dec;270:678-688 [PMID: 30201322]
  108. Sci Total Environ. 2023 Jun 1;875:162633 [PMID: 36889385]
  109. Environ Sci Technol. 2009 Dec 15;43(24):9216-22 [PMID: 20000512]
  110. Bioresour Technol. 2023 May;376:128929 [PMID: 36940876]
  111. Sci Total Environ. 2018 May 1;622-623:402-409 [PMID: 29220765]
  112. Chemosphere. 2017 Apr;173:411-416 [PMID: 28129619]
  113. Biofilm. 2023 Jul 28;6:100145 [PMID: 37575957]
  114. J Hazard Mater. 2023 Feb 15;444(Pt B):130452 [PMID: 36435038]
  115. J Environ Manage. 2017 Feb 1;187:330-339 [PMID: 27918973]
  116. Water Res. 2011 Nov 1;45(17):5612-20 [PMID: 21917290]
  117. J Hazard Mater. 2009 Mar 15;162(2-3):1551-6 [PMID: 18640779]
  118. Nanoscale. 2015 Apr 21;7(15):6588-98 [PMID: 25789459]
  119. Water Res. 2022 Feb 15;210:117968 [PMID: 34952457]
  120. Bioresour Technol. 2015 Jan;176:65-70 [PMID: 25460985]
  121. Bioresour Technol. 2017 Jul;235:281-291 [PMID: 28371766]
  122. Chemosphere. 2022 Jan;287(Pt 2):132083 [PMID: 34488054]
  123. Nat Nanotechnol. 2020 Apr;15(4):256-271 [PMID: 32303705]
  124. Environ Sci Technol. 2012 Jun 5;46(11):5997-6003 [PMID: 22587556]

Word Cloud

Created with Highcharts 10.0.0granularsludgeNPsanammoxaerobicEPSeffectsanaerobicduetreatmentalgal-bacterialAGSreducingproductionHoweverincreasedwastewaterreviewnanoparticlesdemonstratedremovalcellularAnGSAxGShigherABGSenhancedgranulationmicrobialNanoparticlessignificantinterestuniquepropertieslargesurfaceareahighreactivityfacilitatedadvancementsvariousfieldsuseraisesconcernsenvironmentalimpactsincludingprocessesexaminesdifferentusedCeOAgadversenutrientfunctionshowedgreaterresilienceextracellularpolymericsubstancecontentTiOfewernegativealgaeplayedcrucialroleenhancingstabilizinggranulesadditionFeOsignificantlytimepromotinginteractionsimprovinggranulestabilityincreasingnitrogenefficiencyprimarilyenzymeactivityCuCuOexhibitedstronginhibitorysystemsaffectingstructureintegrityviabilityZnOdose-dependenttoxicityconcentrationsinducingoxidativestressperformancewhereastolerantalgae-mediatedprotectionexistingknowledgegapsdirectionsfutureresearchidentifieddiscussedEffectssludge:comprehensiveAerobicAlgal-bacterialAnaerobicAnammoxNanomaterialsWastewater

Similar Articles

Cited By