Harnessing Wearables and Digital Technologies to Decode the Cardiovascular Exposome.

Geyner A Gaona, Ali Asghar Kassamali, Nino Isakadze, Seth S Martin
Author Information
  1. Geyner A Gaona: Osler Medical Residency, Johns Hopkins Hospital, Baltimore, Maryland, US. ORCID
  2. Ali Asghar Kassamali: Johns Hopkins University, Baltimore, Maryland, US. ORCID
  3. Nino Isakadze: Johns Hopkins School of Medicine, Baltimore, Maryland, US. ORCID
  4. Seth S Martin: Johns Hopkins School of Medicine, Baltimore, Maryland, US. ORCID

Abstract

The cardiovascular exposome encompasses the array of external and internal factors affecting cardiovascular health throughout life, inviting comprehensive monitoring and analysis to enhance prevention, diagnosis, and treatment strategies. Wearable and digital technologies have emerged as promising tools in this domain, offering longitudinal, real-time data on physiological parameters such as heart rate, heart rhythm, physical activity, and sleep patterns. This review explores the advancements in wearable sensor technology, the methodologies for data collection and analysis, and the integration of these technologies into clinical practice and research. Primary findings indicate significant improvements in device accuracy and functionality, facilitated by enhanced sensor technology, artificial intelligence, and data connectivity. These advancements enable precise monitoring, early detection of cardiovascular anomalies, and personalized healthcare interventions. Ultimately, wearables and digital health technologies have the potential to facilitate a deeper understanding of cardiovascular disease and behavior and bridge gaps in traditional healthcare models to help usher in more efficient, personalized, patient-centered care.

Keywords

References

  1. Circulation. 2022 Dec 20;146(25):e558-e568 [PMID: 36373541]
  2. Am J Public Health. 2014 Nov;104(11):2130-7 [PMID: 25211756]
  3. JAMA Cardiol. 2021 Apr 1;6(4):398-399 [PMID: 33185656]
  4. JAMA Netw Open. 2023 Jul 3;6(7):e2322727 [PMID: 37432687]
  5. Soc Sci Med. 2019 Dec;243:112571 [PMID: 31675514]
  6. Eur Heart J Digit Health. 2020 Nov 30;1(1):10-19 [PMID: 36713964]
  7. Circ Cardiovasc Qual Outcomes. 2024 Jul;17(7):e011005 [PMID: 38887954]
  8. Circulation. 2018 May 15;137(20):2166-2178 [PMID: 29760227]
  9. Circulation. 2021 Oct 19;144(16):1272-1279 [PMID: 34662161]
  10. Circ Cardiovasc Qual Outcomes. 2014 Jul;7(4):540-9 [PMID: 24895450]
  11. JAMA Netw Open. 2020 Aug 3;3(8):e2014196 [PMID: 32821923]
  12. Arch Intern Med. 2012 Dec 10;172(22):1731-7 [PMID: 23401888]
  13. Eur Heart J. 2024 May 7;45(17):1540-1549 [PMID: 38544295]
  14. Curr Cardiol Rep. 2023 Jan;25(1):17-27 [PMID: 36622491]
  15. J Womens Health (Larchmt). 2008 Sep;17(7):1081-92 [PMID: 18774893]
  16. Circulation. 2006 Dec 5;114(23):2443-8 [PMID: 17101851]
  17. Methodist Debakey Cardiovasc J. 2020 Oct-Dec;16(4):272-282 [PMID: 33500755]
  18. Circ Cardiovasc Qual Outcomes. 2022 Feb;15(2):e007986 [PMID: 35105173]
  19. Ann Intern Med. 2023 Aug;176(8):1089-1091 [PMID: 37459617]
  20. J Urban Health. 2014 Oct;91(5):873-85 [PMID: 24532483]
  21. JAMA. 2020 May 12;323(18):1852-1854 [PMID: 32396176]
  22. J Am Heart Assoc. 2016 Oct 10;5(10): [PMID: 27792645]
  23. Mayo Clin Proc. 2022 Jun;97(6):1108-1113 [PMID: 35300876]
  24. Lancet. 2017 Sep 16;390(10100):1151-1210 [PMID: 28919116]
  25. Epidemiology. 2011 Mar;22(2):162-9 [PMID: 21131822]
  26. Lancet Public Health. 2020 Jul;5(7):e361 [PMID: 32619534]
  27. Int J Cardiol. 2013 Oct 15;168(6):5190-5 [PMID: 23998549]
  28. Am J Cardiol. 2017 Nov 15;120(10):1869-1876 [PMID: 28865889]
  29. J Am Heart Assoc. 2021 Jul 6;10(13):e020466 [PMID: 34212757]
  30. Sens Int. 2021;2:100117 [PMID: 34806053]
  31. JAMA Cardiol. 2024 Feb 1;9(2):153-163 [PMID: 37955891]
  32. JAMA Health Forum. 2022 Jul 1;3(7):e222750 [PMID: 36219001]
  33. Arterioscler Thromb Vasc Biol. 2018 Apr;38(4):935-942 [PMID: 29545240]
  34. J Epidemiol Community Health. 2011 Feb;65(2):137-43 [PMID: 20008161]
  35. Prev Chronic Dis. 2004 Jan;1(1):A02 [PMID: 15634364]
  36. Health Hum Rights. 2023 Jun;25(1):9-21 [PMID: 37266309]
  37. Atherosclerosis. 2024 Mar;390:117453 [PMID: 38262845]
  38. Environ Health Perspect. 2008 Feb;116(2):196-202 [PMID: 18288318]
  39. JACC Adv. 2023 Feb 08;2(2):100196 [PMID: 38938314]
  40. Biol Psychiatry. 2003 Aug 1;54(3):248-61 [PMID: 12893101]
  41. Circulation. 2010 Jun 1;121(21):2331-78 [PMID: 20458016]
  42. Am J Prev Med. 2021 Oct;61(4):492-500 [PMID: 34229931]
  43. Circ Res. 2017 Jul 7;121(2):162-180 [PMID: 28684622]
  44. Circulation. 2004 Jun 1;109(21):2655-71 [PMID: 15173049]
  45. BMC Public Health. 2023 Jul 1;23(1):1277 [PMID: 37393224]
  46. Health Aff (Millwood). 2016 Aug 1;35(8):1424-8 [PMID: 27503967]
  47. Mayo Clin Proc. 2008 Jun;83(6):663-9 [PMID: 18533083]
  48. Ann Epidemiol. 2011 Aug;21(8):572-9 [PMID: 21737046]
  49. BMJ Open. 2015 Mar 17;5(3):e006408 [PMID: 25783421]
  50. JAMA. 2020 Oct 13;324(14):1429-1438 [PMID: 33048153]

MeSH Term

Humans
Wearable Electronic Devices
Cardiovascular Diseases
Exposome
Predictive Value of Tests
Prognosis
Equipment Design
Telemedicine

Word Cloud

Created with Highcharts 10.0.0cardiovascularhealthtechnologiesmonitoringdigitaldatapersonalizedexposomeanalysisheartadvancementswearablesensortechnologyhealthcarecareencompassesarrayexternalinternalfactorsaffectingthroughoutlifeinvitingcomprehensiveenhancepreventiondiagnosistreatmentstrategiesWearableemergedpromisingtoolsdomainofferinglongitudinalreal-timephysiologicalparametersraterhythmphysicalactivitysleeppatternsreviewexploresmethodologiescollectionintegrationclinicalpracticeresearchPrimaryfindingsindicatesignificantimprovementsdeviceaccuracyfunctionalityfacilitatedenhancedartificialintelligenceconnectivityenablepreciseearlydetectionanomaliesinterventionsUltimatelywearablespotentialfacilitatedeeperunderstandingdiseasebehaviorbridgegapstraditionalmodelshelpusherefficientpatient-centeredHarnessingWearablesDigitalTechnologiesDecodeCardiovascularExposomeremote

Similar Articles

Cited By