Preparation and antioxidant properties of tannic acid/copper ion nanozyme hybrid nanofibrous membranes.

Qiao Wu, Jingshu Xiao, Hu Zhuang, Fenghai Zhao, Ruoxi Li, Duntie Zhang
Author Information
  1. Qiao Wu: China Tobacco Hubei Industrial LLC Wuhan Hubei 430072 China.
  2. Jingshu Xiao: China Tobacco Hubei Industrial LLC Wuhan Hubei 430072 China.
  3. Hu Zhuang: China Tobacco Hubei Industrial LLC Wuhan Hubei 430072 China.
  4. Fenghai Zhao: China Tobacco Hubei Industrial LLC Wuhan Hubei 430072 China.
  5. Ruoxi Li: China Tobacco Hubei Industrial LLC Wuhan Hubei 430072 China.
  6. Duntie Zhang: China Tobacco Hubei Industrial LLC Wuhan Hubei 430072 China.

Abstract

Excess free radicals can have some negative effects on human health. In this paper, a nanozyme was successfully constructed by the coordination of copper ions and tannic acid, and its structure and elemental distribution were determined by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. Free radical scavenging experiments confirmed that it possessed superoxide dismutase-like activity, catalase-like activity, and hydroxyl radical scavenging ability. The results of thermogravimetric analysis experiments demonstrated that it possessed good thermal stability. A polyacrylonitrile hybrid nanofibrous membrane loaded with Cu/TA nanozyme was successfully constructed by electrospinning technology, and the maximum scavenging rate of DPPH and ABTS radicals can reach 64.22% and 58.44%, respectively. The nanofiber membrane also exhibited the ability to protect cells from oxidative stress damage. Therefore, the hybrid nanofibrous membrane has a broad application prospect in fields such as food preservation and biomedicine.

References

  1. Redox Biol. 2021 Aug;44:102001 [PMID: 33994345]
  2. ACS Appl Mater Interfaces. 2021 Jul 14;13(27):31996-32004 [PMID: 34156238]
  3. Free Radic Res. 2010 Oct;44(10):1216-62 [PMID: 20836663]
  4. Nat Rev Drug Discov. 2021 Sep;20(9):689-709 [PMID: 34194012]
  5. Int J Nanomedicine. 2024 Jan 10;19:231-245 [PMID: 38223881]
  6. Indian J Clin Biochem. 2024 Apr;39(2):154-167 [PMID: 38577147]
  7. Biomaterials. 2021 Jan;266:120474 [PMID: 33125969]
  8. Small. 2020 Jul;16(27):e1902123 [PMID: 31468655]
  9. ACS Appl Mater Interfaces. 2023 Nov 3;: [PMID: 37921634]
  10. Antioxidants (Basel). 2022 Mar 26;11(4): [PMID: 35453322]
  11. Physiol Rev. 1998 Apr;78(2):547-81 [PMID: 9562038]
  12. Adv Healthc Mater. 2024 Jan;13(1):e2302023 [PMID: 37742127]
  13. RSC Adv. 2022 Oct 12;12(45):29162-29169 [PMID: 36320747]
  14. J Sci Food Agric. 2021 Dec;101(15):6355-6367 [PMID: 33969891]
  15. RSC Adv. 2024 Mar 4;14(11):7572-7581 [PMID: 38440267]
  16. J Inflamm Res. 2022 Nov 15;15:6307-6328 [PMID: 36411826]
  17. Int J Biol Macromol. 2024 Apr;263(Pt 1):130210 [PMID: 38365144]
  18. Talanta. 2024 Jan 1;266(Pt 1):124991 [PMID: 37516071]
  19. Mol Aspects Med. 2004 Feb-Apr;25(1-2):17-26 [PMID: 15051313]
  20. Adv Healthc Mater. 2023 Jul;12(17):e2203063 [PMID: 36842067]
  21. Free Radic Biol Med. 2010 Mar 15;48(6):749-62 [PMID: 20045723]
  22. Redox Biol. 2019 Jul;25:101084 [PMID: 30612957]
  23. J Control Release. 2023 Mar;355:273-291 [PMID: 36731800]
  24. Int J Biol Macromol. 2018 Dec;120(Pt B):2552-2559 [PMID: 30195609]
  25. Adv Sci (Weinh). 2020 Dec 20;8(3):2002797 [PMID: 33552863]
  26. Small. 2024 Aug;20(33):e2311848 [PMID: 38556630]
  27. ACS Nano. 2024 Mar 5;18(9):7024-7036 [PMID: 38394383]
  28. Heliyon. 2023 Jun 07;9(6):e17051 [PMID: 37484420]
  29. J Mater Chem B. 2022 Aug 10;10(31):5873-5912 [PMID: 35880440]
  30. J Hematol Oncol. 2023 Nov 30;16(1):116 [PMID: 38037103]
  31. Arch Toxicol. 2020 Mar;94(3):651-715 [PMID: 32180036]
  32. Nat Commun. 2020 Jun 3;11(1):2788 [PMID: 32493916]
  33. Nanomicro Lett. 2023 Apr 30;15(1):112 [PMID: 37121915]
  34. Chem Rev. 2019 Mar 27;119(6):4357-4412 [PMID: 30801188]
  35. ACS Nano. 2023 Oct 10;17(19):18732-18746 [PMID: 37768714]
  36. Drug Metab Rev. 1998 May;30(2):225-43 [PMID: 9606602]
  37. Nat Rev Mol Cell Biol. 2024 Jan;25(1):13-33 [PMID: 37714962]
  38. Cancer Lett. 2017 Feb 28;387:95-105 [PMID: 27037062]
  39. J Mater Chem B. 2021 May 26;9(20):4098-4110 [PMID: 33913461]
  40. Small. 2022 Jun;18(23):e2201205 [PMID: 35543499]

Word Cloud

Created with Highcharts 10.0.0nanozymescavenginghybridnanofibrousmembraneradicalscansuccessfullyconstructedtannicspectroscopyradicalexperimentspossessedactivityabilityExcessfreenegativeeffectshumanhealthpapercoordinationcopperionsacidstructureelementaldistributiondeterminedFouriertransforminfraredscanningelectronmicroscopyX-rayphotoelectronFreeconfirmedsuperoxidedismutase-likecatalase-likehydroxylresultsthermogravimetricanalysisdemonstratedgoodthermalstabilitypolyacrylonitrileloadedCu/TAelectrospinningtechnologymaximumrateDPPHABTSreach6422%5844%respectivelynanofiberalsoexhibitedprotectcellsoxidativestressdamageThereforebroadapplicationprospectfieldsfoodpreservationbiomedicinePreparationantioxidantpropertiesacid/copperionmembranes

Similar Articles

Cited By