A systematic review and meta-analysis of carbapenem-resistant Enterobacteriaceae in West Africa.

Namwin Siourimè Somda, Rabbi Nyarkoh, Fleischer C N Kotey, Patience B Tetteh-Quarcoo, Eric S Donkor
Author Information
  1. Namwin Siourimè Somda: Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana.
  2. Rabbi Nyarkoh: Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana.
  3. Fleischer C N Kotey: Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana.
  4. Patience B Tetteh-Quarcoo: Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana.
  5. Eric S Donkor: Department of Medical Microbiology, University of Ghana Medical School, Korle Bu, P.O. Box KB 4236, Accra, Ghana. esampane-donkor@ug.edu.gh.

Abstract

BACKGROUND: In Africa, the problem of carbapenem-resistant Enterobacteriaceae (CRE) is aggravated by many factors. This systematic review attempted to describe the current status of the molecular epidemiology of carbapenem resistance in West Africa (WA).
METHODS: Articles published from 16 West African countries on the molecular epidemiology of carbapenem resistance were reviewed. An extensive literature search was carried out in PubMed, Scopus, Web of Science, and African Journals Online (AJOL) using specific keywords. The meta-analysis and forest plots of major pathogens and carbapenem resistance genes were done using the Open Meta-Analyst, Task Order # 2 software. The data were analysed in binary random model effects by the DerSimonian-Laird method at a 95% confidence interval.
RESULTS: Of the 431 articles found in our initial search, 60 (13.92%) were considered suitable for inclusion. Only seven of the 16 West African countries formed part of the analysis, Nigeria (23/60), Ghana (19/60), Burkina Faso (7/60), Senegal (6/60), Benin (2/60), Mali (2/60), and Togo (1/60). Also, 80% (48/60) of the studies used clinical samples, 16.67% (10/60) used environmental samples, and 3.33% (2/60) used animal samples. The average prevalence was highest in Acinetobacter baumannii (18.6%; 95% CI = 14.0-24.6, I = 97.9%, p < 0.001), followed by Pseudomonas aeruginosa (6.5%; 95% CI = 3.1-13.4, I = 96.52%, p < 0.001), Klebsiella pneumoniae (5.8%; 95% CI = 4.2-7.9, I = 98.06%, p < 0.001) and Escherichia coli (4.1%; 95% CI = 2.2-7.7, I = 96.68%, p < 0.001). The average prevalence of the blaNDM gene was 10.6% (95% CI = 7.9-14.3, I = 98.2%, p < 0.001), followed by 3.9% (95% CI: 1.8-8.3, I = 96.73%, p < 0.001) for blaVIM and 3.1% (95% CI: 1.7-5.8, I = 91.69%, p < 0.001) for blaOXA-48.
CONCLUSION: In West Africa, K. pneumoniae, E. coli, A. baumannii, and P. aeruginosa are the main CRE with blaNDM, blaVIM, and blaOXA-48 being the predominant carbapenem resistance genes. In view of these results, ongoing CRE surveillance combined with antimicrobial stewardship improved, laboratory detection methods, and adherence to infection control practices will be needed to control the spread of CRE.

Keywords

References

  1. Trop Med Infect Dis. 2023 Nov 16;8(11): [PMID: 37999619]
  2. mSystems. 2022 Feb 22;7(1):e0101921 [PMID: 35103490]
  3. Int J Antimicrob Agents. 2018 Sep;52(3):372-384 [PMID: 29864500]
  4. Emerg Infect Dis. 2020 Sep;26(9):2235-2238 [PMID: 32818427]
  5. BMJ. 2003 Sep 6;327(7414):557-60 [PMID: 12958120]
  6. J Infect Dev Ctries. 2023 Dec 31;17(12):1714-1721 [PMID: 38252715]
  7. JAC Antimicrob Resist. 2023 Apr 10;5(2):dlad038 [PMID: 37051191]
  8. Front Microbiol. 2021 Dec 01;12:770130 [PMID: 34925277]
  9. Emerg Microbes Infect. 2021 Dec;10(1):865-873 [PMID: 33879019]
  10. J Environ Public Health. 2022 Oct 6;2022:2850165 [PMID: 36246472]
  11. Sci Rep. 2018 Oct 11;8(1):15116 [PMID: 30310126]
  12. Biomed Res Int. 2020 Sep 24;2020:3852419 [PMID: 33029505]
  13. Infect Drug Resist. 2021 May 24;14:1905-1920 [PMID: 34079301]
  14. Int J Antimicrob Agents. 2019 Apr;53(4):530-532 [PMID: 30476571]
  15. Infect Dis Rep. 2023 Jun 20;15(3):339-353 [PMID: 37367193]
  16. Environ Sci Pollut Res Int. 2017 Mar;24(7):6710-6714 [PMID: 28084599]
  17. Front Med (Lausanne). 2022 Mar 07;9:846051 [PMID: 35321470]
  18. Heliyon. 2024 Mar 17;10(7):e28052 [PMID: 38596009]
  19. Ann Clin Microbiol Antimicrob. 2021 Jan 6;20(1):5 [PMID: 33407536]
  20. J Glob Antimicrob Resist. 2020 Jun;21:211-217 [PMID: 31654790]
  21. Microbiol Spectr. 2023 Dec 12;11(6):e0238123 [PMID: 37796014]
  22. Emerg Infect Dis. 2011 Oct;17(10):1791-8 [PMID: 22000347]
  23. Microbiol Spectr. 2024 Mar 5;12(3):e0301723 [PMID: 38315028]
  24. Antibiotics (Basel). 2023 Sep 29;12(10): [PMID: 37887195]
  25. PLoS One. 2023 Oct 30;18(10):e0274156 [PMID: 37903118]
  26. J Food Prot. 2023 Mar;86(3):100061 [PMID: 36916564]
  27. Nat Commun. 2022 Jun 1;13(1):3052 [PMID: 35650193]
  28. PLoS One. 2021 Mar 17;16(3):e0248614 [PMID: 33730101]
  29. Int J Health Geogr. 2007 Oct 10;6:46 [PMID: 17927837]
  30. Int J Infect Dis. 2013 Mar;17(3):e209-10 [PMID: 23084970]
  31. Clin Infect Dis. 2018 Apr 3;66(8):1290-1297 [PMID: 29165604]
  32. Drug Target Insights. 2023 Aug 29;17:92-100 [PMID: 37654725]
  33. Antibiotics (Basel). 2023 Jun 05;12(6): [PMID: 37370334]
  34. mSphere. 2023 Jun 22;8(3):e0009823 [PMID: 37067411]
  35. mSphere. 2019 Mar 13;4(2): [PMID: 30867330]
  36. J Med Microbiol. 2020 May;69(5):685-688 [PMID: 32375948]
  37. BMC Microbiol. 2023 Nov 17;23(1):351 [PMID: 37978428]
  38. Int J Antimicrob Agents. 2014 May;43(5):412-7 [PMID: 24613608]
  39. Pathogens. 2023 Jul 26;12(8): [PMID: 37623934]
  40. PLoS One. 2019 Sep 12;14(9):e0222168 [PMID: 31513633]
  41. Antimicrob Agents Chemother. 2017 Jan 24;61(2): [PMID: 27919894]
  42. JAC Antimicrob Resist. 2024 Mar 06;6(2):dlae021 [PMID: 38449514]
  43. BMC Microbiol. 2022 Jan 4;22(1):6 [PMID: 34979901]
  44. Emerg Microbes Infect. 2019;8(1):1747-1759 [PMID: 31805829]
  45. Open Forum Infect Dis. 2017 Aug 16;4(3):ofx176 [PMID: 29026867]
  46. J Glob Antimicrob Resist. 2020 Jun;21:321-323 [PMID: 31639547]
  47. Antimicrob Resist Infect Control. 2022 Mar 16;11(1):49 [PMID: 35296353]
  48. PLoS One. 2023 Nov 28;18(11):e0287762 [PMID: 38015906]
  49. Antimicrob Agents Chemother. 2017 Jul 25;61(8): [PMID: 28607027]
  50. Afr J Lab Med. 2022 Feb 22;11(1):1371 [PMID: 35282396]
  51. Front Vet Sci. 2023 Jun 15;10:1158588 [PMID: 37397005]
  52. Niger J Clin Pract. 2018 Feb;21(2):176-182 [PMID: 29465051]
  53. Niger Postgrad Med J. 2015 Oct-Dec;22(4):223-7 [PMID: 26776335]
  54. J Am Chem Soc. 2021 May 12;143(18):6886-6894 [PMID: 33909441]
  55. Antimicrob Agents Chemother. 2021 Jun 17;65(7):e0028921 [PMID: 33941520]
  56. PLoS One. 2012;7(6):e39495 [PMID: 22745768]
  57. Antimicrob Agents Chemother. 2021 Aug 17;65(9):e0255720 [PMID: 34152818]
  58. Microbiol Spectr. 2022 Dec 21;10(6):e0332022 [PMID: 36453894]
  59. Microb Drug Resist. 2021 Jan;27(1):18-24 [PMID: 32522076]
  60. Front Microbiol. 2016 Sep 13;7:1406 [PMID: 27679613]
  61. Diagn Microbiol Infect Dis. 2023 May;106(1):115918 [PMID: 37058979]
  62. Antibiotics (Basel). 2023 Dec 28;13(1): [PMID: 38247589]
  63. Microorganisms. 2021 Mar 05;9(3): [PMID: 33807838]
  64. Trop Med Infect Dis. 2022 Aug 21;7(8): [PMID: 36006292]
  65. Front Microbiol. 2020 Nov 13;11:587398 [PMID: 33281784]
  66. Int J Microbiol. 2023 Jun 2;2023:4813225 [PMID: 37303773]
  67. Antimicrob Agents Chemother. 2021 Jun 17;65(7):e0200020 [PMID: 33972241]
  68. Microb Drug Resist. 2019 Dec;25(10):1449-1457 [PMID: 31237486]
  69. Microbiol Res. 2023 Jan;266:127249 [PMID: 36356348]
  70. J Glob Antimicrob Resist. 2020 Jun;21:42-45 [PMID: 31472281]
  71. Eur Urol. 2022 Dec;82(6):658 [PMID: 36068104]
  72. BMC Infect Dis. 2020 Sep 1;20(1):646 [PMID: 32873235]
  73. Infect Dis (Lond). 2020 Sep;52(9):644-650 [PMID: 32516021]
  74. BMC Microbiol. 2021 Apr 21;21(1):124 [PMID: 33882823]
  75. Environ Int. 2024 Mar;185:108554 [PMID: 38479059]
  76. Sci Rep. 2023 Jun 26;13(1):10306 [PMID: 37365355]
  77. Diagn Microbiol Infect Dis. 2021 Sep;101(1):115422 [PMID: 34111650]
  78. PLoS One. 2022 Dec 30;17(12):e0279715 [PMID: 36584159]
  79. Infect Dis Poverty. 2022 Aug 23;11(1):92 [PMID: 35996187]
  80. BMC Infect Dis. 2016 Oct 4;16(1):536 [PMID: 27716102]
  81. BMC Res Notes. 2018 Aug 31;11(1):629 [PMID: 30170613]
  82. J Antimicrob Chemother. 2021 Feb 11;76(3):659-666 [PMID: 33276387]
  83. Clin Microbiol Infect. 2020 Mar;26(3):271-280 [PMID: 31751768]

MeSH Term

Carbapenem-Resistant Enterobacteriaceae
Africa, Western
Humans
Enterobacteriaceae Infections
Carbapenems
Anti-Bacterial Agents

Chemicals

Carbapenems
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.095%p < 0001WestAfrica3CREcarbapenemresistanceepidemiology16African2/60usedsamplesI = 96carbapenem-resistantEnterobacteriaceaesystematicreviewmolecularcountriessearchusingmeta-analysisgenesaverageprevalencebaumannii6%69%followedaeruginosa4pneumoniae2-7I = 98coli1%blaNDMCI:1blaVIMblaOXA-48controlBACKGROUND:problemaggravatedmanyfactorsattempteddescribecurrentstatusWAMETHODS:ArticlespublishedreviewedextensiveliteraturecarriedPubMedScopusWebScienceJournalsOnlineAJOLspecifickeywordsforestplotsmajorpathogensdoneOpenMeta-AnalystTaskOrder#2softwaredataanalysedbinaryrandommodeleffectsDerSimonian-LairdmethodconfidenceintervalRESULTS:431articlesfoundinitial601392%consideredsuitableinclusionsevenformedpartanalysisNigeria23/60Ghana19/60BurkinaFaso7/60Senegal6/60BeninMaliTogo1/60Also80%48/60studiesclinical67%10/60environmental33%animalhighestAcinetobacter18CI = 140-24I = 97Pseudomonas5%CI = 31-1352%Klebsiella58%CI = 4906%EscherichiaCI = 2768%gene10CI = 79-142%8-873%7-58I = 9169%CONCLUSION:KEPmainpredominantviewresultsongoingsurveillancecombinedantimicrobialstewardshipimprovedlaboratorydetectionmethodsadherenceinfectionpracticeswillneededspreadCarbapenem-resistanceMeta-analysisMolecular

Similar Articles

Cited By