An optimization method for measuring the stomata in cassava (a Crantz) under multiple abiotic stresses.

Muqing Ma, Jinbao Gu, Zhen-Yu Wang
Author Information
  1. Muqing Ma: Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China.
  2. Jinbao Gu: Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, No. 10 Middle Jianghai Avenue, Haizhu District, Guangzhou, Guangdong, 510316, China.
  3. Zhen-Yu Wang: Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, No. 10 Middle Jianghai Avenue, Haizhu District, Guangzhou, Guangdong, 510316, China.

Abstract

As a gateway for gas exchange, pores regulate the transport of air and water in carbon assimilation, respiration, and transpiration to quickly adapt to environmental changes. Therefore, the study of stomatal movement characteristics of plants is helpful to strengthen the understanding of the mechanism of plant response to multi-environmental stress, and can improve the function of plant resistance to stresses. The stomatal movement of leaves was observed by staining the stomata with rhodamine 6G, but this method has not been reported in other plant leaf stomata studies. Taking cassava as an example, the correlation between cassava stomatal movement and cassava response to stress was observed by using and improving the staining method. Rhodamine 6G is a biological stain widely used in cell biology and molecular biology. It was found that 1�����M rhodamine 6G could stain the stomata of cassava without affecting stomatal movement ( = 109, < 0.05). In addition, we proposed that stomata fixed with 4% concentration of formaldehyde after staining were closest to the stomatal morphology of cassava epidermis, so as to observe stomatal movement under different environmental stresses more accurately. Previous methods of measuring stomatal pore size by autofluorescence of cell wall needs to fix the cells for 6���h, but Rhodamine staining can only be observed in 2���min, which greatly improves the experimental efficiency. Compared with the traditional exfoliation method (e.g., ), this method can reduce the damage of the leaves and observe the stomata of the whole leaves more completely, so that the experimental results are more complete. In addition, the method enables continuous leaf processing and observation. Using this method, we further compared four different cassava varieties (i.e., KU50, SC16, SC8, and SC205) and found that there are differences in stomatal density (SD) among cassava varieties, and the difference in the SD directly affects the stress resistance of cassava ( = 107, < 0.001). This finding has important implications for studying the mechanism of plant response to environmental stress through stomata.

Keywords

References

  1. Nat Commun. 2022 Aug 26;13(1):5040 [PMID: 36028510]
  2. J Sci Food Agric. 2017 Jun;97(8):2282-2290 [PMID: 28233322]
  3. Int J Mol Sci. 2016 Feb 25;17(3):283 [PMID: 26927071]
  4. J Exp Bot. 2015 Mar;66(5):1477-88 [PMID: 25547914]
  5. Plant Mol Biol. 2022 Jun;109(3):325-349 [PMID: 34313932]
  6. New Phytol. 2021 Jun;230(5):2001-2010 [PMID: 33586157]
  7. New Phytol. 2023 Mar;237(6):2180-2195 [PMID: 36630602]
  8. Mol Plant. 2016 Mar 7;9(3):471-480 [PMID: 26902185]
  9. Nature. 2001 Mar 15;410(6826):327-30 [PMID: 11268200]
  10. Plant Cell. 2001 Nov;13(11):2513-23 [PMID: 11701885]
  11. Plants (Basel). 2024 Jul 10;13(14): [PMID: 39065426]
  12. Nat Commun. 2021 Mar 29;12(1):1952 [PMID: 33782393]
  13. J Integr Plant Biol. 2024 Mar;66(3):368-393 [PMID: 38319001]
  14. Front Plant Sci. 2020 Oct 29;11:518991 [PMID: 33193466]
  15. Genes (Basel). 2021 May 14;12(5): [PMID: 34068886]
  16. Mol Plant. 2022 Jan 3;15(1):167-178 [PMID: 34530166]
  17. Crit Rev Food Sci Nutr. 1982;17(3):259-75 [PMID: 6756790]
  18. Pak J Biol Sci. 2007 Sep 15;10(18):3085-90 [PMID: 19090103]
  19. Ann Bot. 2017 Apr 1;119(6):1021-1033 [PMID: 28158449]
  20. Open Life Sci. 2024 Jun 11;19(1):20220892 [PMID: 38867920]
  21. PLoS One. 2018 Aug 8;13(8):e0201803 [PMID: 30089159]
  22. Plant Physiol. 2016 Jul;171(3):1569-80 [PMID: 27208297]
  23. Plants (Basel). 2019 Dec 16;8(12): [PMID: 31888275]
  24. Science. 2019 Oct 25;366(6464): [PMID: 31649167]
  25. AoB Plants. 2013;5:plt007 [PMID: 23519782]
  26. Int J Mol Sci. 2023 Sep 18;24(18): [PMID: 37762526]
  27. Methods Mol Biol. 2016;1363:89-121 [PMID: 26577784]
  28. Curr Biol. 2022 Jun 6;32(11):R539-R553 [PMID: 35671732]
  29. Cell Biol Toxicol. 2002;18(1):43-50 [PMID: 11991085]
  30. Annu Rev Plant Biol. 2004;55:373-99 [PMID: 15377225]
  31. Ecol Lett. 2017 Nov;20(11):1437-1447 [PMID: 28922708]
  32. Foods. 2024 Jun 05;13(11): [PMID: 38891006]
  33. PLoS One. 2016 Oct 12;11(10):e0164576 [PMID: 27732636]
  34. Annu Rev Plant Biol. 2020 Apr 29;71:273-302 [PMID: 32155341]
  35. Annu Rev Plant Biol. 2015;66:369-92 [PMID: 25665132]
  36. DNA Res. 2012;19(4):335-45 [PMID: 22619309]
  37. Philos Trans R Soc Lond B Biol Sci. 2012 Feb 19;367(1588):537-46 [PMID: 22232765]
  38. Plant J. 2021 Jan;105(2):307-321 [PMID: 33145840]
  39. New Phytol. 2015 Apr;206(1):141-151 [PMID: 25408145]
  40. Plant Physiol. 2017 Jun;174(2):572-582 [PMID: 28062836]
  41. New Phytol. 2021 Oct;232(1):60-67 [PMID: 34254322]
  42. Curr Biol. 2018 Aug 6;28(15):R814-R816 [PMID: 30086309]
  43. J Sci Food Agric. 2022 Sep;102(12):5022-5033 [PMID: 33448400]
  44. Nat Commun. 2014 Aug 05;5:4549 [PMID: 25093373]
  45. Front Plant Sci. 2020 Jul 02;11:881 [PMID: 32714346]
  46. New Phytol. 2008;178(1):9-23 [PMID: 18266617]
  47. Mol Plant. 2022 Oct 3;15(10):1558-1574 [PMID: 36045577]

Word Cloud

Created with Highcharts 10.0.0cassavastomatalstomatamethodmovementstressplantstaining6GenvironmentalresponsecanstressesleavesobservedrhodaminemechanismresistanceleafRhodaminestaincellbiologyfound=<0additionobservedifferentmeasuringexperimentalevarietiesSDCrantzabioticgatewaygasexchangeporesregulatetransportairwatercarbonassimilationrespirationtranspirationquicklyadaptchangesThereforestudycharacteristicsplantshelpfulstrengthenunderstandingmulti-environmentalimprovefunctionreportedstudiesTakingexamplecorrelationusingimprovingbiologicalwidelyusedmolecular1�����Mwithoutaffecting10905proposedfixed4%concentrationformaldehydeclosestmorphologyepidermisaccuratelyPreviousmethodsporesizeautofluorescencewallneedsfixcells6���h2���mingreatlyimprovesefficiencyComparedtraditionalexfoliationgreducedamagewholecompletelyresultscompleteenablescontinuousprocessingobservationUsingcomparedfouriKU50SC16SC8SC205differencesdensityamongdifferencedirectlyaffects107001findingimportantimplicationsstudyingoptimizationmultipleManihotesculenta

Similar Articles

Cited By