Exploring the potential of naturally occurring antimicrobials for managing orthopedic-device-related infections.

Baixing Chen, T Fintan Moriarty, Hans Steenackers, Georges F Vles, Jolien Onsea, Thijs Vackier, Isabel Spriet, Rob Lavigne, R Geoff Richards, Willem-Jan Metsemakers
Author Information
  1. Baixing Chen: Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium.
  2. T Fintan Moriarty: AO Research Institute Davos, Davos, Switzerland.
  3. Hans Steenackers: Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium.
  4. Georges F Vles: Department of Orthopaedic Surgery, University Hospitals Leuven, Leuven, Belgium.
  5. Jolien Onsea: Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium.
  6. Thijs Vackier: Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium.
  7. Isabel Spriet: Pharmacy Department, University Hospitals Leuven, Leuven, Belgium.
  8. Rob Lavigne: Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium.
  9. R Geoff Richards: AO Research Institute Davos, Davos, Switzerland.
  10. Willem-Jan Metsemakers: Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium.

Abstract

Orthopedic-device-related infections (ODRIs) are challenging clinical complications that are often exacerbated by antibiotic resistance and biofilm formation. This review explores the efficacy of naturally occurring antimicrobials - including agents sourced from bacteria, fungi, viruses, animals, plants and minerals - against pathogens common in ODRIs. The limitations of traditional antibiotic agents are presented, and innovative naturally occurring antimicrobials, such as bacteriophage therapy and antimicrobial peptides, are evaluated with respect to their interaction with conventional antibiotics and antibiofilm efficacy. The integration of these natural agents into clinical practice could revolutionize ODRI treatment strategies, offering effective alternatives to conventional antibiotics and mitigating resistance development. However, the translation of these compounds from research into the clinic may require the substantial investment of intellectual and financial resources.

References

  1. J Control Release. 2023 Dec;364:159-173 [PMID: 37866403]
  2. J Wound Ostomy Continence Nurs. 2019 Jan/Feb;46(1):25-29 [PMID: 30608337]
  3. Sci Rep. 2020 Jul 29;10(1):12689 [PMID: 32728110]
  4. Clin Infect Dis. 2013 Jan;56(2):182-94 [PMID: 22942204]
  5. Nat Commun. 2020 Jan 9;11(1):107 [PMID: 31919364]
  6. Biotechnol Adv. 2019 Jan - Feb;37(1):177-192 [PMID: 30500353]
  7. Sci Rep. 2016 May 26;6:26717 [PMID: 27225966]
  8. Antibiotics (Basel). 2022 Jul 08;11(7): [PMID: 35884176]
  9. Chem Biol. 2010 Sep 24;17(9):970-80 [PMID: 20851346]
  10. Med Res Rev. 2019 Sep;39(5):2000-2025 [PMID: 30887551]
  11. J Bone Jt Infect. 2022 Jul 27;7(4):169-175 [PMID: 36032801]
  12. Clin Microbiol Infect. 2016 Aug;22(8):732.e1-8 [PMID: 27181408]
  13. Front Public Health. 2022 Dec 21;10:1025633 [PMID: 36620240]
  14. Antibiotics (Basel). 2022 Jul 14;11(7): [PMID: 35884200]
  15. J Biomed Sci. 2022 Mar 30;29(1):23 [PMID: 35354477]
  16. PLoS One. 2014 Jul 15;9(7):e102760 [PMID: 25025650]
  17. 3 Biotech. 2017 Jul;7(3):172 [PMID: 28660459]
  18. J Pharm Anal. 2020 Aug;10(4):277-290 [PMID: 32923005]
  19. Int J Environ Res Public Health. 2020 Aug 21;17(17): [PMID: 32825736]
  20. Biomaterials. 2006 Apr;27(11):2331-9 [PMID: 16364434]
  21. Antimicrob Agents Chemother. 2019 Jan 29;63(2): [PMID: 30455229]
  22. Mar Drugs. 2010 Feb 23;8(2):313-46 [PMID: 20390108]
  23. Int J Antimicrob Agents. 2010 Apr;35(4):322-32 [PMID: 20149602]
  24. Viruses. 2018 Jun 30;10(7): [PMID: 29966329]
  25. Wound Repair Regen. 2019 Nov;27(6):672-679 [PMID: 31350938]
  26. Biometals. 2013 Aug;26(4):609-21 [PMID: 23771576]
  27. Front Microbiol. 2020 Oct 23;11:594868 [PMID: 33193274]
  28. Methods Mol Biol. 2009;501:69-76 [PMID: 19066811]
  29. J Antibiot (Tokyo). 2020 Jun;73(6):329-364 [PMID: 32152527]
  30. Antibiotics (Basel). 2022 Jun 22;11(7): [PMID: 35884092]
  31. J Orthop Trauma. 2020 Jan;34(1):30-41 [PMID: 31567902]
  32. Future Microbiol. 2017 Feb;12:109-117 [PMID: 27643529]
  33. Arthroplasty. 2023 Jan 3;5(1):2 [PMID: 36593482]
  34. Biomed Res Int. 2017;2017:2897045 [PMID: 29159177]
  35. Front Microbiol. 2018 Feb 05;9:127 [PMID: 29459853]
  36. Curr Opin Biomed Eng. 2022 Dec;24:100408 [PMID: 36033159]
  37. Viruses. 2021 Aug 05;13(8): [PMID: 34452408]
  38. Sci Rep. 2021 May 28;11(1):11300 [PMID: 34050227]
  39. Front Cell Infect Microbiol. 2017 Aug 24;7:379 [PMID: 28884090]
  40. Eur Cell Mater. 2021 Jun 21;41:774-792 [PMID: 34151416]
  41. J Orthop Res. 2018 Jun;36(6):1590-1598 [PMID: 29405452]
  42. Curr Med Chem. 2015;22(14):1757-73 [PMID: 25666799]
  43. Sci Transl Med. 2013 Sep 25;5(204):204ra132 [PMID: 24068739]
  44. J Bone Jt Infect. 2022 Dec 21;7(6):279-288 [PMID: 36644590]
  45. Bacteriophage. 2011 Mar;1(2):66-85 [PMID: 22334863]
  46. J Bone Jt Infect. 2020 Jun 27;5(4):212-222 [PMID: 32670776]
  47. Antimicrob Agents Chemother. 2022 Sep 20;66(9):e0050622 [PMID: 35950843]
  48. Nat Rev Dis Primers. 2022 Oct 20;8(1):67 [PMID: 36266296]
  49. J Bone Jt Infect. 2017 Jan 15;2(2):73-76 [PMID: 28529866]
  50. Antibiotics (Basel). 2020 Mar 20;9(3): [PMID: 32244862]
  51. Front Cell Infect Microbiol. 2024 Sep 03;14:1434397 [PMID: 39290977]
  52. Microbiol Spectr. 2023 Dec 12;11(6):e0181323 [PMID: 37971248]
  53. Pharmacotherapy. 2018 Sep;38(9):935-946 [PMID: 30019769]
  54. Appl Environ Microbiol. 2015 Feb;81(3):1132-8 [PMID: 25452284]
  55. PLoS One. 2007 Aug 29;2(8):e799 [PMID: 17726529]
  56. Biol Proced Online. 2019 Sep 13;21:18 [PMID: 31528123]
  57. Sci Adv. 2019 May 17;5(5):eaaw1228 [PMID: 31114804]
  58. J Bone Jt Infect. 2022 Sep 06;7(5):187-189 [PMID: 36267261]
  59. Lancet Infect Dis. 2022 Aug;22(8):e208-e220 [PMID: 35248167]
  60. Sci Adv. 2020 Sep 2;6(36): [PMID: 32917596]
  61. Front Med (Lausanne). 2021 May 14;8:550853 [PMID: 34055817]
  62. Antimicrob Agents Chemother. 2019 Sep 23;63(10): [PMID: 31332073]
  63. Fungal Divers. 2022;116(1):547-614 [PMID: 36123995]
  64. Front Microbiol. 2021 Apr 21;12:658521 [PMID: 33967997]
  65. EFORT Open Rev. 2017 Mar 13;1(4):89-99 [PMID: 28461934]

Word Cloud

Created with Highcharts 10.0.0naturallyoccurringantimicrobialsagentsinfectionsODRIsclinicalantibioticresistanceefficacy-conventionalantibioticsOrthopedic-device-relatedchallengingcomplicationsoftenexacerbatedbiofilmformationreviewexploresincludingsourcedbacteriafungivirusesanimalsplantsmineralspathogenscommonlimitationstraditionalpresentedinnovativebacteriophagetherapyantimicrobialpeptidesevaluatedrespectinteractionantibiofilmintegrationnaturalpracticerevolutionizeODRItreatmentstrategiesofferingeffectivealternativesmitigatingdevelopmentHowevertranslationcompoundsresearchclinicmayrequiresubstantialinvestmentintellectualfinancialresourcesExploringpotentialmanagingorthopedic-device-related

Similar Articles

Cited By

No available data.