Integrated virtual screening and MD simulation study to discover potential inhibitors of mycobacterial electron transfer flavoprotein oxidoreductase.

Kaleem Arshad, Jahanzab Salim, Muhammad Ali Talat, Asifa Ashraf, Nazia Kanwal
Author Information
  1. Kaleem Arshad: Biological Sciences, Superior University, Lahore, Pakistan. ORCID
  2. Jahanzab Salim: Khawaja Muhammad Safdar Medical College, Sialkot, Pakistan.
  3. Muhammad Ali Talat: Khawaja Muhammad Safdar Medical College, Sialkot, Pakistan.
  4. Asifa Ashraf: Khawaja Muhammad Safdar Medical College, Sialkot, Pakistan.
  5. Nazia Kanwal: Biological Sciences, Superior University, Lahore, Pakistan.

Abstract

Tuberculosis (TB) continues to be a major global health burden, with high incidence and mortality rates, compounded by the emergence and spread of drug-resistant strains. The limitations of current TB medications and the urgent need for new drugs targeting drug-resistant strains, particularly multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB, underscore the pressing demand for innovative anti-TB drugs that can shorten treatment duration. This has led to a focus on targeting energy metabolism of Mycobacterium Tuberculosis (Mtb) as a promising approach for drug discovery. This study focused on repurposing drugs against the crucial mycobacterial protein, electron transfer flavoprotein oxidoreductase (EtfD), integral to utilizing fatty acids and cholesterol as a carbon source during infection. The research adopted an integrative approach, starting with virtual screening of approved drugs from the ZINC20 database against EtfD, followed by molecular docking, and concluding with molecular dynamics (MD) simulations. Diacerein, levonadifloxacin, and gatifloxacin were identified as promising candidates for repurposing against TB based on their strong binding affinity, stability, and interactions with EtfD. ADMET analysis and anti-TB sensitivity predictions assessed their pharmacokinetic and therapeutic potential. Diacerein and levonadifloxacin, previously unexplored in anti-tuberculous therapy, along with gatifloxacin, known for its efficacy in drug-resistant TB, have broad-spectrum antimicrobial properties and favorable pharmacokinetic profiles, suggesting potential as alternatives to current TB treatments, especially against resistant strains. This study underscores the efficacy of computational drug repurposing, highlighting bacterial energy metabolism and lipid catabolism as fruitful targets. Further research is necessary to validate the clinical suitability and efficacy of Diacerein, levonadifloxacin, and gatifloxacin, potentially enhancing the arsenal against global TB.

References

  1. J Biol Chem. 2014 Jul 25;289(30):21142-52 [PMID: 24923585]
  2. Protein Sci. 2003 May;12(5):1073-86 [PMID: 12717029]
  3. J Med Chem. 2015 May 14;58(9):4066-72 [PMID: 25860834]
  4. Int J Infect Dis. 2015 Mar;32:50-5 [PMID: 25809756]
  5. Antioxid Redox Signal. 2020 Jun;32(18):1348-1366 [PMID: 31621379]
  6. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W407-10 [PMID: 17517781]
  7. PLoS Pathog. 2011 Sep;7(9):e1002251 [PMID: 21980284]
  8. J Biol Chem. 2019 Feb 8;294(6):1936-1943 [PMID: 30530783]
  9. Nat Rev Microbiol. 2018 Aug;16(8):496-507 [PMID: 29691481]
  10. Nat Chem Biol. 2007 Jun;3(6):323-4 [PMID: 17496888]
  11. Eur Respir J. 2013 Jul;42(1):169-179 [PMID: 23060633]
  12. Protein Sci. 2018 Jan;27(1):293-315 [PMID: 29067766]
  13. J Phys Chem Lett. 2014 Nov 6;5(21):3863-3871 [PMID: 25400877]
  14. J Comput Chem. 2004 Jul 15;25(9):1157-74 [PMID: 15116359]
  15. Eur J Pharmacol. 2021 May 15;899:173908 [PMID: 33515540]
  16. Methods Mol Biol. 2015;1263:243-50 [PMID: 25618350]
  17. J Chem Inf Model. 2020 Dec 28;60(12):6065-6073 [PMID: 33118813]
  18. Nat Commun. 2021 Jul 21;12(1):4438 [PMID: 34290238]
  19. Biomed Pharmacother. 2020 Nov;131:110594 [PMID: 32858499]
  20. Nat Biotechnol. 2017 Nov;35(11):1026-1028 [PMID: 29035372]
  21. Eur J Med Chem. 2021 Feb 15;212:113139 [PMID: 33422979]
  22. FEBS Lett. 2005 Sep 26;579(23):5157-62 [PMID: 16146629]
  23. J Chem Theory Comput. 2020 Jan 14;16(1):528-552 [PMID: 31714766]
  24. Nature. 2023 Oct;622(7983):637-645 [PMID: 37704730]
  25. J Comput Chem. 2009 Dec;30(16):2785-91 [PMID: 19399780]
  26. Drug Discov Today. 2021 Jun;26(6):1353-1358 [PMID: 33581116]
  27. Adv Protein Chem Struct Biol. 2016;102:181-224 [PMID: 26827606]
  28. Nat Protoc. 2016 May;11(5):905-19 [PMID: 27077332]
  29. Front Pharmacol. 2018 Aug 22;9:923 [PMID: 30186166]
  30. Gene. 2021 Apr 15;776:145407 [PMID: 33450351]
  31. mBio. 2017 Apr 11;8(2): [PMID: 28400527]
  32. Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4453-8 [PMID: 25831516]
  33. J Chem Inf Model. 2023 Oct 23;63(20):6183-6191 [PMID: 37805934]
  34. Int J Tuberc Lung Dis. 2019 Sep 1;23(9):965-971 [PMID: 31615602]
  35. J Mol Biol. 1999 Oct 22;293(2):321-31 [PMID: 10550212]
  36. ACS Infect Dis. 2020 Nov 13;6(11):3015-3025 [PMID: 32930569]
  37. Sci Rep. 2017 Mar 03;7:42717 [PMID: 28256516]
  38. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  39. PLoS One. 2015 Mar 27;10(3):e0119264 [PMID: 25816325]
  40. Nucleic Acids Res. 2022 Jan 7;50(D1):D439-D444 [PMID: 34791371]
  41. Comp Immunol Microbiol Infect Dis. 2021 Feb;74:101574 [PMID: 33249329]
  42. Drugs Today (Barc). 2020 Sep;56(9):583-598 [PMID: 33025952]
  43. Mol Biol (Mosk). 2008 Jul-Aug;42(4):701-6 [PMID: 18856071]
  44. mBio. 2020 Jul 7;11(4): [PMID: 32636249]
  45. BMC Infect Dis. 2015 Mar 25;15:153 [PMID: 25887373]
  46. Nucleic Acids Res. 2024 Jan 5;52(D1):D368-D375 [PMID: 37933859]
  47. mBio. 2015 May 05;6(3):e00253-15 [PMID: 25944857]
  48. J Chem Theory Comput. 2012 Sep 11;8(9):3314-21 [PMID: 26605738]
  49. Microbes Infect. 2007 Sep;9(11):1285-90 [PMID: 17890119]
  50. AMB Express. 2023 Aug 12;13(1):85 [PMID: 37573278]
  51. Biochemistry. 2010 Mar 2;49(8):1616-27 [PMID: 20078138]
  52. Crit Care Res Pract. 2022 Sep 9;2022:2668199 [PMID: 36785544]
  53. Immunol Rev. 2021 May;301(1):84-97 [PMID: 33559209]
  54. ChemMedChem. 2013 Feb;8(2):313-21 [PMID: 23307663]
  55. Biochem Soc Trans. 2016 Oct 15;44(5):1185-1200 [PMID: 27911701]
  56. Bioinformatics. 2013 Nov 1;29(21):2722-8 [PMID: 23986568]
  57. Medicine (Baltimore). 2022 Sep 23;101(38):e30412 [PMID: 36197231]
  58. Free Radic Biol Med. 2014 Jul;72:104-12 [PMID: 24721152]
  59. Int J Tuberc Lung Dis. 2014 Oct;18(10):1180-7 [PMID: 25216831]
  60. J Chem Inf Model. 2020 Jul 27;60(7):3450-3456 [PMID: 32615035]
  61. Pathog Dis. 2018 Mar 1;76(2): [PMID: 29718271]
  62. Cell Surf. 2020 Apr 21;6:100040 [PMID: 32743152]
  63. Nucleic Acids Res. 2023 Jan 6;51(D1):D418-D427 [PMID: 36350672]
  64. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W537-41 [PMID: 22570416]
  65. Proteins. 2000 Nov 15;41(3):415-27 [PMID: 11025552]
  66. Microbiol Spectr. 2017 Jun;5(3): [PMID: 28597820]
  67. Int J Infect Dis. 2022 Feb;115:142-148 [PMID: 34861398]
  68. Nat Commun. 2021 Nov 15;12(1):6593 [PMID: 34782606]
  69. Curr Opin Microbiol. 2018 Oct;45:39-46 [PMID: 29482115]
  70. J Med Microbiol. 2019 Dec;68(12):1716-1722 [PMID: 31689174]
  71. PLoS Comput Biol. 2009 Dec;5(12):e1000585 [PMID: 19997483]

MeSH Term

Mycobacterium tuberculosis
Molecular Dynamics Simulation
Molecular Docking Simulation
Antitubercular Agents
Humans
Bacterial Proteins
Drug Repositioning
Gatifloxacin

Chemicals

Antitubercular Agents
Bacterial Proteins
Gatifloxacin

Word Cloud

Created with Highcharts 10.0.0TBdrug-resistantdrugsstrainsstudyrepurposingEtfDlevonadifloxacingatifloxacinpotentialefficacyglobalcurrenttargetinganti-TBenergymetabolismpromisingapproachdrugmycobacterialelectrontransferflavoproteinoxidoreductaseresearchvirtualscreeningmolecularMDDiacereinpharmacokineticTuberculosiscontinuesmajorhealthburdenhighincidencemortalityratescompoundedemergencespreadlimitationsmedicationsurgentneednewparticularlymultidrug-resistantMDRextensivelyXDRunderscorepressingdemandinnovativecanshortentreatmentdurationledfocusMycobacteriumtuberculosisMtbdiscoveryfocusedcrucialproteinintegralutilizingfattyacidscholesterolcarbonsourceinfectionadoptedintegrativestartingapprovedZINC20databasefolloweddockingconcludingdynamicssimulationsidentifiedcandidatesbasedstrongbindingaffinitystabilityinteractionsADMETanalysissensitivitypredictionsassessedtherapeuticpreviouslyunexploredanti-tuberculoustherapyalongknownbroad-spectrumantimicrobialpropertiesfavorableprofilessuggestingalternativestreatmentsespeciallyresistantunderscorescomputationalhighlightingbacteriallipidcatabolismfruitfultargetsnecessaryvalidateclinicalsuitabilitydiacereinpotentiallyenhancingarsenalIntegratedsimulationdiscoverinhibitors

Similar Articles

Cited By

No available data.