Iono-Magnonic Reservoir Computing With Chaotic Spin Wave Interference Manipulated by Ion-Gating.

Wataru Namiki, Daiki Nishioka, Yuki Nomura, Takashi Tsuchiya, Kazuo Yamamoto, Kazuya Terabe
Author Information
  1. Wataru Namiki: Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan. ORCID
  2. Daiki Nishioka: Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan. ORCID
  3. Yuki Nomura: Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta, Nagoya, Aichi, 456-8587, Japan. ORCID
  4. Takashi Tsuchiya: Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan. ORCID
  5. Kazuo Yamamoto: Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta, Nagoya, Aichi, 456-8587, Japan. ORCID
  6. Kazuya Terabe: Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan. ORCID

Abstract

Physical reservoirs are a promising approach for realizing high-performance artificial intelligence devices utilizing physical devices. Although nonlinear interfered spin-wave multi-detection exhibits high nonlinearity and the ability to map in high dimensional feature space, it does not have sufficient performance to process time-series data precisely. Herein, development of an iono-magnonic reservoir by combining such interfered spin wave multi-detection and ion-gating involving protonation-induced redox reaction triggered by the application of voltage is reported. This study is the first to report the manipulation of the propagating spin wave property by ion-gating and the application of the same to physical reservoir computing. The subject iono-magnonic reservoir can generate various reservoir states in a single homogenous medium by utilizing a spin wave property modulated by ion-gating. Utilizing the strong nonlinearity resulting from chaos, the reservoir shows good computational performance in completing the Mackey-Glass chaotic time-series prediction task, and the performance is comparable to that exhibited by simulated neural networks.

Keywords

References

  1. L. Bernstein, A. Sludds, R. Hamerly, V. Sze, J. Emer, D. Englund, Sci. Rep. 2021, 11, 3144.
  2. H. Jaeger, H. Haas, Science 2004, 304, 78.
  3. W. Maass, T. Natschläger, H. Markram, Neural Comput. 2002, 14, 2531.
  4. D. Verstraeten, B. Schrauwen, M. D'Haene, D. Stroobandt, Neural Networks 2007, 20, 391.
  5. G. Tanaka, T. Yamase, J. B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata, D. Nakano, A. Hirose, Neural Networks 2019, 115, 100.
  6. S. Stepny, Phys. D 2008, 237, 1157.
  7. L. Appeltant, M. C. Sorano, G. van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso, I. Fischer, Nat. Commun. 2011, 2, 468.
  8. C. Du, F. Cai, M. A. Zidan, W. Ma, S. H. Lee, W. D. Lu, Nat. Commun. 2017, 8, 2204.
  9. S. Kan, K. Nakajima, T. Asai, M. A. Kasaya, Phys. Rev. Appl. 2021, 15, 024030.
  10. S. Kan, K. Nakajima, T. Asai, M. A. Kasaya, Adv. Sci. 2022, 9, i2104076.
  11. M. A. Kasaya, Y. Takeshima, S. Kan, K. Nakajima, T. Oya, T. Asai, Neuromorphic Comput. Eng. 2022, 2, 014003.
  12. T. Shingu, H. Uchiyama, T. Watanabe, Y. Ohno, Carbon 2023, 214, 118344.
  13. G. Milano, G. Pedretti, K. Montano, S. Ricci, S. Hashemkhani, L. Boarino, D. Ielmini, C. Ricciardi, Nat. Mater. 2022, 21, 195.
  14. H. O. Sillin, R. Aguilera, H.‐H. Shieh, A. V. Avizienis, M. Aono, A. Z. Stieg, J. K. Gimzewski, Nanotechnology 2023, 24, 384004.
  15. J. Torrejon, M. Riou, F. A. Araujo, S. Tsunegi, G. Khalsa, D. Querlioa, P. Bortolotti, V. Cros, K. Yakushiji, A. Fukushima, H. Kubota, S. Yuasa, M. D. Stiles, J. Grollier, Nature 2017, 547, 428.
  16. W. Jiang, L. Chen, K. Zhou, L. Li, Q. Fu, Y. Du, R. H. Liu, Appl. Phys. Lett. 2019, 115, 192403.
  17. N. Akashi, T. Yamaguchi, S. Tsunegi, T. Taniguchi, M. Nishida, R. Sakurai, Y. Wakao, K. Nakajima, Phys. Rev. Res. 2020, 2, 043303.
  18. S. Watt, M. Kostylev, A. B. Ustinov, B. A. Kalinikos, Phys. Rev. Appl. 2021, 15, 064060.
  19. R. Nakane, G. Tanaka, A. Hirose, IEEE Access 2018, 6, 4462.
  20. R. Nakane, A. Hirose, G. Tanaka, Phys. Rev. Appl. 2023, 19, 034047.
  21. W. Namiki, D. Nishioka, Y. Yamaguchi, T. Tsuchiya, T. Higuchi, K. Terabe, Adv. Intell. Syst. 2023, 5, 2300228.
  22. W. Namiki, D. Nishioka, T. Tsuchiya, T. Higuchi, K. Terabe, Nano Lett. 2024, 24, 4383.
  23. I. T. Vidamour, C. Swindells, G. Venkat, P. W. Fry, A. Welbourne, R. M. Rowan‐Robinson, D. Backes, F. Maccherozzi, S. S. Dhesi, E. Vasilaki, D. A. Allwood, T. J. Hayward, Commun. Phys. 2023, 6, 230.
  24. J. C. Gartside, G. D. Stenning, A. Vanstone, H. H. Holder, D. M. Arroo, T. Dion, F. Caravelli, H. Kurebayashi, W. R. Branford, Nat. Nanotechnol. 2022, 17, 460.
  25. O. Lee, T. Wei, K. D. Stenning, J. C. Gartside, D. Pestwood, S. Seki, A. Aqeel, K. Karube, N. Kanazawa, Y. Taguchi, C. Back, Y. Tokura, W. R. Branford, H. Kurebayashi, Nat. Mater. 2024, 23, 79.
  26. M. Nakajima, K. Tanaka, T. Hashimoto, Commun. Phys. 2021, 4, 20.
  27. F. Duport, A. Smerieri, A. Akrout, M. Haelterman, S. Massar, Sci. Rep. 2016, 6, 22381.
  28. M. Hermans, P. Antonik, M. Haelterman, S. Massar, Phys. Rev. Lett. 2016, 117, 128301.
  29. Q. Vinckier, F. Duport, A. Smerieri, K. Vandoorne, P. Bienstman, M. Haelterman, S. Massar, Optica 2015, 2, 438.
  30. F. Duport, B. Schneider, A. Smerieri, M. Haelterman, S. Massar, Opt. Express 2012, 20, 22783.
  31. K. Nakajima, H. Hauser, T. Li, R. Pfeifer, Sci. Rep. 2015, 5, 10487.
  32. D. Nishioka, T. Tsuchiya, W. Namiki, M. Takayanagi, M. Imura, Y. Koide, T. Higuchi, K. Terabe, Sci. Adv. 2022, 8, eade1156.
  33. D. Nishioka, Y. Shingaya, T. Tsuchiya, T. Higuchi, K. Terabe, Sci. Adv. 2024, 10, eadk6438.
  34. T. Wada, D. Nishioka, W. Namiki, T. Tsuchiya, T. Higuchi, K. Terabe, Adv. Intell. Syst. 2023, 5, 2300123.
  35. K. Shibata, D. Nishioka, W. Namiki, T. Tsuchiya, T. Higuchi, K. Terabe, Sci. Rep. 2023, 13, 21060.
  36. B. Barazani, G. Dion, J.‐F. Morissette, L. Beaudoin, J. Sylvestre, J. Microelectromech. Syst. 2020, 29, 338.
  37. J. J. Maraj, K. P. T. Haughn, D. J. Inman, S. A. Sarles, Adv. Intell. Syst. 2023, 5, 2300049.
  38. T. Tsuchiya, K. Terabe, M. Ochi, T. Higuchi, M. Osada, Y. Yamashita, S. Ueda, M. Aono, ACS Nano 2016, 10, 1655.
  39. W. Namiki, T. Tsuchiya, M. Takayanagi, T. Higuchi, K. Terabe, ACS Nano 2020, 14, 16065.
  40. T. Wada, W. Namiki, T. Tsuchiya, D. Kan, Y. Shimakawa, T. Higuchi, K. Terabe, Jpn. J. Appl. Phys. 2022, 61, SM1002.
  41. S. Zhao, W. Hou, Y. Li, M. Zhu, H. Li, C. Li, Z. Hu, P. Yu, M. Liu, Adv. Electron. Mater. 2020, 6, 1900859.
  42. T. Goto, T. Yoshimoto, B. Iwamoto, K. Shimada, C. A. Ross, K. Sekiguchi, A. B. Graovsky, Y. Nakamura, H. Uchida, M. Inoue, Sci. Rep. 2019, 9, 16472.
  43. D. Song, L. Ma, S. Zhou, J. Zhu, Appl. Phys. Lett. 2015, 107, 042401.
  44. S. Tan, W. Zhang, L. Yang, J. Chen, Z. Wang, J. Appl. Phys. 2020, 128, 183904.
  45. A. Papp, W. Porod, G. Csaba, Nat. Commun. 2021, 12, 6422.
  46. H. Ohno, D. Chiba, F. Matsukawa, T. Omiya, E. Abe, T. Dietl, Y. Ohno, K. Otani, Nature 2000, 408, 944.
  47. M. Weisheit, S. Fahler, A. Marty, Y. Souche, C. Poinsingnon, D. Givord, Science 2007, 315, 349.
  48. A. F. Atiya, IEEE Trans. Neural Netw. 2000, 11, 697.
  49. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia‐Sanchez, B. Van Waeyenberge, AIP Adv. 2014, 4, 107133.
  50. J. Y. Sarrión, Master's Thesis of Physics of Complex Systems at the University of Balearic Island 2019.
  51. D. Nishioka, T. Tsuchiya, M. Imura, Y. Koide, T. Higuchi, K. Terabe, Commun. Eng. 2024, 3, 81.
  52. R. Mito, K. Kanno, M. Naruse, A. Uchida, Nonlinear Theory Appl. IEICE 2022, 13, 123.
  53. J. Zhang, B. Ma, W. Zou, Opt. Express 2023, 31, 43920.
  54. J. Bueno, D. Brunner, M. C. Soriano, I. Fischer, Opt. Express 2017, 25, 2401.
  55. M. Abdalla, C. Zrounba, R. Cardoso, P. Jimenez, G. Ren, A. Boes, A. Mitchell, A. Bosio, I. O'Connor, F. Pavanello, Opt. Express 2023, 31, 11610.
  56. X. Liang, Y. Zhong, J. Tang, Z. Liu, P. Yao, K. Sun, Q. Zhang, B. Gao, H. Heidari, H. Qin, H. Wu, Nat. Commun. 2022, 13, 1549.
  57. S. Shahi, F. H. Fenton, E. M. Cherry, Mach. Learn. Appl. 2022, 8, 100300.
  58. R. Chandra, S. Goyal, R. Gupta, IEEE Access 2021, 9, 83105.
  59. R. Ye, Q. Dai, Appl. Soft Comput. 2019, 79, 227.
  60. M. C. Mackey, L. Glass, Science 1977, 197, 287.
  61. J. Hochstetter, R. Zhu, A. Lowffler, A. D. Alvarez, T. Nakayama, A. Kuncic, Nat. Commun. 2021, 12, 4008.
  62. K. Fukuda, Y. Horio, Nonlinear Theory Appl. IEICE 2021, 12, 639.
  63. A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano, Phys. D: Nonlinear Phenom. 1985, 16, 285.
  64. C. Yang, Q. Wu, Nonlinear Dyn. 2010, 59, 239.
  65. R. López‐Ruiz, H. L. Mancini, X. Calbe, Phys. Lett. A 1995, 209, 321.
  66. M. T. Martin, A. Plastino, O. A. Rosso, Phys. A 2006, 369, 439.
  67. O. A. Rosso, H. A. Larrondo, M. T. Martin, A. Plastino, M. A. Fuentes, Phys. Rev. Lett. 2007, 99, 154102.
  68. H. Jaeger, German National Research Center for information Technology GMD Tech. Rep. 2001, 148, 13.
  69. R. Midya, Z. Wang, S. Asapu, X. Zhang, M. Rao, W. Song, Y. Zhuo, N. Upadhyay, J. J. Yang, Adv. Intell. Syst. 2019, 1, 1900084.
  70. Y. Zhong, J. Tang, X. Li, B. Gao, H. Qian, H. Wu, Nat. Commun. 2021, 12, 408.
  71. M. R. Hossain, A. S. Mohamed, N. X. Armendarez, J. S. Najem, M. S. Hasan, Adv. Intell. Syst. 2023, 5, 2300346.
  72. T. Okumura, M. Tai, M. Ando, Nonlinear Theory Appl. 2019, 10, 236.
  73. W. Namiki, D. Nishioka, T. Tsuchiya, K. Terabe, Neuromorphic Comput. Eng. 2024, 4, 024015.

Grants

  1. JP22H04625/Japan Society for the Promotion of Science
  2. JP19H05814/Japan Society for the Promotion of Science
  3. JP22KJ2799/Japan Society for the Promotion of Science
  4. JPJ004596/Innovative Science and Technology Initiative for Security
  5. JPMXP1223NM5072/Ministry of Education, Culture, Sports, Science and Technology
  6. JPMJPR23H4/Precursory Research for Embryonic Science and Technology

Word Cloud

Created with Highcharts 10.0.0reservoirspinwaveperformanceion-gatingdevicesutilizingphysicalnonlinearinterferedmulti-detectionhighnonlinearitytime-seriesiono-magnonicredoxapplicationpropertycomputingPhysicalreservoirspromisingapproachrealizinghigh-performanceartificialintelligenceAlthoughspin-waveexhibitsabilitymapdimensionalfeaturespacesufficientprocessdatapreciselyHereindevelopmentcombininginvolvingprotonation-inducedreactiontriggeredvoltagereportedstudyfirstreportmanipulationpropagatingsubjectcangeneratevariousstatessinglehomogenousmediummodulatedUtilizingstrongresultingchaosshowsgoodcomputationalcompletingMackey-GlasschaoticpredictiontaskcomparableexhibitedsimulatedneuralnetworksIono-MagnonicReservoirComputingChaoticSpinWaveInterferenceManipulatedIon-Gatinginterferenceprotonsolid‐stateelectrolyte

Similar Articles

Cited By