Mapping sentence comprehension and syntactic complexity: evidence from 131 stroke survivors.

Nicoletta Biondo, Maria V Ivanova, Alexis L Pracar, Juliana Baldo, Nina F Dronkers
Author Information
  1. Nicoletta Biondo: Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA. ORCID
  2. Maria V Ivanova: Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA.
  3. Alexis L Pracar: Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA.
  4. Juliana Baldo: Veteran Affairs Northern California Health Care System, Martinez, CA 94553, USA.
  5. Nina F Dronkers: Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA.

Abstract

Understanding and interpreting how words are organized in a sentence to convey distinct meanings is a cornerstone of human communication. The neural underpinnings of this ability, known as syntactic comprehension, are far from agreed upon in current neurocognitive models of language comprehension. Traditionally, left frontal regions (e.g. left posterior inferior frontal gyrus) were considered critical, while more recently, left temporal regions (most prominently, left posterior middle temporal gyrus) have been identified as more indispensable to syntactic comprehension. Syntactic processing has been investigated by using different types of non-canonical sentences i.e. those that do not follow prototypical word order and are considered more syntactically complex. However, non-canonical sentences can be complex for different linguistic reasons, and thus, their comprehension might rely on different neural underpinnings. In this cross-sectional study, we explored the neural correlates of syntactic comprehension by investigating the roles of left hemisphere brain regions and white matter pathways in processing sentences with different levels of syntactic complexity. Participants were assessed at a single point in time using structural MRI and behavioural tests. Employing lesion-symptom mapping and indirect structural disconnection mapping in a cohort of 131 left hemisphere stroke survivors, our analysis revealed the following left temporal regions and underlying white matter pathways as crucial for general sentence comprehension: the left mid-posterior superior temporal gyrus, middle temporal gyrus and superior temporal sulcus and the inferior longitudinal fasciculus, the inferior fronto-occipital fasciculus, the middle longitudinal fasciculus, the uncinate fasciculus and the tracts crossing the most posterior part of the corpus callosum. We further found significant involvement of different white matter tracts connecting the left temporal and frontal lobes for different sentence types. Spared connections between the left temporal and frontal regions were critical for the comprehension of non-canonical sentences requiring long-distance retrieval (spared superior longitudinal fasciculus for both subject and object extraction and spared arcuate fasciculus for object extraction) but not for comprehension of non-canonical passive sentences and canonical declarative sentences. Our results challenge traditional language models that emphasize the primary role of the left frontal regions, such as Broca's area, in basic sentence structure comprehension. Our findings suggest a gradient of syntactic complexity, rather than a clear-cut dichotomy between canonical and non-canonical sentence structures. Our findings contribute to a more nuanced understanding of the neural architecture of language comprehension and highlight potential directions for future research.

Keywords

References

  1. Cortex. 2016 Dec;85:165-181 [PMID: 27289586]
  2. Cereb Cortex. 2020 Mar 14;30(3):1481-1498 [PMID: 31670779]
  3. Neuron. 2007 Jan 4;53(1):135-45 [PMID: 17196536]
  4. Neuroimage. 2005 May 15;26(1):195-205 [PMID: 15862219]
  5. Neuroinformatics. 2019 Jan;17(1):83-102 [PMID: 29946897]
  6. Front Hum Neurosci. 2008 Oct 06;2:14 [PMID: 18958214]
  7. Med Image Comput Comput Assist Interv. 2005;8(Pt 2):765-72 [PMID: 16686029]
  8. Neuropsychologia. 2018 Jul 1;115:25-41 [PMID: 29526647]
  9. Hum Brain Mapp. 2021 Mar;42(4):1070-1101 [PMID: 33216425]
  10. Cortex. 2013 Mar;49(3):658-67 [PMID: 22482693]
  11. Neuroimage. 2007 Sep 1;37(3):866-75 [PMID: 17616402]
  12. Cereb Cortex. 2015 Dec;25(12):4812-27 [PMID: 26271113]
  13. Neuroimage Clin. 2021;30:102639 [PMID: 33813262]
  14. Hum Brain Mapp. 2019 May;40(7):2153-2173 [PMID: 30666767]
  15. Nat Neurosci. 2003 May;6(5):448-50 [PMID: 12704393]
  16. Neuropsychol Rev. 2021 Sep;31(3):402-418 [PMID: 33656701]
  17. Neuropsychology. 1998 Apr;12(2):193-207 [PMID: 9556766]
  18. Neuroimage Rep. 2022 Mar;2(1):None [PMID: 35243477]
  19. Behav Brain Sci. 1999 Feb;22(1):77-94; discussion 95-126 [PMID: 11301522]
  20. Neuroimage. 2022 Feb 15;247:118778 [PMID: 34896587]
  21. Cortex. 2017 Dec;97:164-182 [PMID: 28277283]
  22. Hum Brain Mapp. 2018 Nov;39(11):4169-4182 [PMID: 29972618]
  23. Neurobiol Lang (Camb). 2022 Apr 13;3(2):318-344 [PMID: 37215558]
  24. J Mem Lang. 2013 Apr;68(3): [PMID: 24403724]
  25. Neurosci Biobehav Rev. 2017 Oct;81(Pt B):205-212 [PMID: 27477445]
  26. Neuroimage. 2001 Aug;14(2):486-500 [PMID: 11467921]
  27. Hum Brain Mapp. 2020 Apr 15;41(6):1387-1399 [PMID: 31782852]
  28. J Cogn Neurosci. 2012 Jan;24(1):212-22 [PMID: 21861679]
  29. Neuroimage. 2021 Jan 1;224:117374 [PMID: 32949711]
  30. Brain Lang. 2013 Apr;125(1):60-76 [PMID: 23454075]
  31. Cogn Psychol. 2000 Aug;41(1):49-100 [PMID: 10945922]
  32. Front Syst Neurosci. 2011 Feb 10;5:1 [PMID: 21347218]
  33. Neuropsychologia. 2018 Jul 1;115:112-123 [PMID: 28847712]
  34. Cortex. 2022 Jan;146:216-226 [PMID: 34902680]
  35. Neurology. 2017 Mar 7;88(10):970-975 [PMID: 28179469]
  36. Hum Brain Mapp. 2013 Oct;34(10):2715-23 [PMID: 22522937]
  37. Brain. 2022 Nov 21;145(11):3916-3930 [PMID: 35727949]
  38. Brain Struct Funct. 2022 Dec;227(9):3129-3144 [PMID: 36048282]
  39. J Cogn Neurosci. 2011 Oct;23(10):2629-31; discussion 2632-5 [PMID: 21563891]
  40. Electroencephalogr Clin Neurophysiol. 1988 Dec;70(6):499-509 [PMID: 2461284]
  41. Neuron. 2011 Oct 20;72(2):397-403 [PMID: 22017996]
  42. Neuroimage. 2018 Sep;178:57-68 [PMID: 29758339]
  43. Brain Lang. 2022 Sep;232:105162 [PMID: 35908340]
  44. Physiol Rev. 2011 Oct;91(4):1357-92 [PMID: 22013214]
  45. Philos Trans R Soc Lond B Biol Sci. 2020 Jan 6;375(1789):20180391 [PMID: 31735144]
  46. Cognition. 2004 May-Jun;92(1-2):145-77 [PMID: 15037129]
  47. Hum Brain Mapp. 2014 Dec;35(12):5861-76 [PMID: 25044213]
  48. Front Psychol. 2018 Mar 28;9:414 [PMID: 29643825]
  49. Behav Neurol. 2010;22(1-2):3-10 [PMID: 20543453]
  50. J Cogn Neurosci. 2018 Feb;30(2):234-255 [PMID: 29064339]
  51. Front Psychol. 2013 Jul 12;4:416 [PMID: 23874313]
  52. Neuropsychologia. 2018 Jul 1;115:51-59 [PMID: 29572061]
  53. Behav Neurol. 2000;12(4):191-200 [PMID: 11568431]
  54. J Mem Lang. 2008 Nov;59(4):434-446 [PMID: 19884961]
  55. Brain. 2018 Dec 1;141(12):3389-3404 [PMID: 30418586]
  56. Cortex. 2021 Sep;142:252-271 [PMID: 34303116]
  57. Brain Imaging Behav. 2015 Mar;9(1):19-31 [PMID: 25515348]
  58. Hum Brain Mapp. 2017 Jun;38(6):3151-3162 [PMID: 28345282]
  59. Brain Lang. 1989 Jul;37(1):59-72 [PMID: 2752275]
  60. Front Hum Neurosci. 2021 Jun 25;15:672665 [PMID: 34248526]
  61. Neurobiol Lang (Camb). 2023 Oct 31;4(4):550-574 [PMID: 37946730]
  62. Cereb Cortex. 2016 Aug;26(8):3508-26 [PMID: 27230218]
  63. Neuropsychol Rev. 2006 Sep;16(3):131-48 [PMID: 17109238]

Grants

  1. R56 DC020700/NIDCD NIH HHS

Word Cloud

Created with Highcharts 10.0.0comprehensionlefttemporalsentencesyntacticregionsdifferentsentencesfasciculusfrontalnon-canonicalneuralgyruslanguageposteriorinferiormiddlewhitemattersuperiorlongitudinalunderpinningsmodelseconsideredcriticalprocessingusingtypescomplexhemispherepathwayscomplexitystructuralmappingdisconnection131strokesurvivorstractssparedobjectextractioncanonicalfindingsUnderstandinginterpretingwordsorganizedconveydistinctmeaningscornerstonehumancommunicationabilityknownfaragreeduponcurrentneurocognitiveTraditionallygrecentlyprominentlyidentifiedindispensableSyntacticinvestigatedifollowprototypicalwordordersyntacticallyHowevercanlinguisticreasonsthusmightrelycross-sectionalstudyexploredcorrelatesinvestigatingrolesbrainlevelsParticipantsassessedsinglepointtimeMRIbehaviouraltestsEmployinglesion-symptomindirectcohortanalysisrevealedfollowingunderlyingcrucialgeneralcomprehension:mid-posteriorsulcusfronto-occipitaluncinatecrossingpartcorpuscallosumfoundsignificantinvolvementconnectinglobesSparedconnectionsrequiringlong-distanceretrievalsubjectarcuatepassivedeclarativeresultschallengetraditionalemphasizeprimaryroleBroca'sareabasicstructuresuggestgradientratherclear-cutdichotomystructurescontributenuancedunderstandingarchitecturehighlightpotentialdirectionsfutureresearchMappingcomplexity:evidenceaphasialesionsyntax

Similar Articles

Cited By