Transcriptome-Wide Association Analysis of Flavonoid Biosynthesis Genes and Their Correlation With Leaf Phenotypes in Hawk Tea ( var. ).

Lan Yang, Huie Li, Na Xie, Gangyi Yuan, Qiqiang Guo
Author Information
  1. Lan Yang: Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry Guizhou University Guiyang People's Republic of China.
  2. Huie Li: College of Agriculture Guizhou University Guiyang People's Republic of China.
  3. Na Xie: Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry Guizhou University Guiyang People's Republic of China.
  4. Gangyi Yuan: The People's Government of Yongshan County Zhaotong Yunnan People's Republic of China.
  5. Qiqiang Guo: Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry Guizhou University Guiyang People's Republic of China. ORCID

Abstract

Hawk tea ( var. ), derived from the tender shoots or leaves, rich in flavonoids can promote healthcare for humans. The primary flavonoid are kaempferol-3-O--D-glucoside, kaempferol-3-O--D-galactoside, quercetin-3-O--D-glucoside, and quercetin-3-O--D-galactoside. The existence of an association between leaf phenotype and flavonoid content, along with the underlying mechanisms of flavonoid biosynthesis, remains incompletely understood. In this study, 109 samples were analyzed to determine the correlation and genetic variability in leaf phenotype and flavonoid content. Furthermore, a transcriptome-wide association study identified candidate loci implicated in the biosynthesis of four key flavonoids. The study revealed that genetic variability in leaf traits and flavonoid concentrations is predominantly attributed to interpopulation differences. Flavonoid accumulation was significantly correlated with tree DBH, indicative of age-related traits. Transcriptome-wide association analysis identified 84 significant SNPs associated with flavonoid content, with only 13 located within gene regions. The majority of these genes are implicated in metabolic processes and secondary metabolite biosynthesis. Notably, structural genes within these regions are directly involved in pathways known to regulate flavonoid metabolism, exerting a pivotal influence on flavonoid biosynthesis. These results revealed the physiological basis for the regulation of flavonoid content, as well as the molecular mechanisms for the biosynthesis of flavonoids in hawk tea. It also lays theoretical groundwork for subsequent explorations into the genetic determinants influencing flavonoid accumulation of hawk tea.

Keywords

References

  1. Genetics. 2016 Dec;204(4):1379-1390 [PMID: 27770036]
  2. BMC Bioinformatics. 2011 Jul 27;12:305 [PMID: 21794104]
  3. Molecules. 2022 Apr 20;27(9): [PMID: 35565984]
  4. Eur J Mass Spectrom (Chichester). 2005;11(1):93-101 [PMID: 15947448]
  5. Nat Biotechnol. 2023 Feb;41(2):232-238 [PMID: 36050551]
  6. Int J Mol Sci. 2022 Feb 16;23(4): [PMID: 35216290]
  7. Methods Mol Biol. 2008;448:31-9 [PMID: 18370229]
  8. Plant Foods Hum Nutr. 2004 Summer;59(3):113-22 [PMID: 15678717]
  9. Plant J. 2019 Mar;97(5):947-969 [PMID: 30472798]
  10. Theor Appl Genet. 2007 May;114(8):1437-49 [PMID: 17356864]
  11. BMC Plant Biol. 2021 Apr 28;21(1):204 [PMID: 33910529]
  12. J Chromatogr B Analyt Technol Biomed Life Sci. 2018 Nov 15;1100-1101:148-157 [PMID: 30317153]
  13. Z Naturforsch C J Biosci. 2019 Sep 25;74(9-10):279-282 [PMID: 31393836]
  14. Exp Ther Med. 2021 Aug;22(2):842 [PMID: 34149888]
  15. Front Plant Sci. 2020 Feb 25;10:1794 [PMID: 32158452]
  16. Front Plant Sci. 2022 Jul 14;13:882766 [PMID: 35909769]
  17. Biochem Biophys Res Commun. 2018 Nov 30;506(3):755-764 [PMID: 29673595]
  18. Acta Vet Hung. 2023 May 03;71(1):16-24 [PMID: 37141048]
  19. Nat Commun. 2019 Aug 13;10(1):3651 [PMID: 31409784]
  20. Biol Pharm Bull. 2015;38(1):75-81 [PMID: 25744461]
  21. Nat Biotechnol. 2012 Aug;30(8):798-802 [PMID: 22820317]
  22. Hortic Res. 2022 Jul 02;9:uhac100 [PMID: 35795389]
  23. Drug Metab Lett. 2018;12(2):138-144 [PMID: 29984664]
  24. Front Plant Sci. 2022 Aug 18;13:968466 [PMID: 36061785]
  25. Hortic Res. 2021 Mar 1;8(1):42 [PMID: 33642595]
  26. Appl Environ Microbiol. 2023 Oct 31;89(10):e0060523 [PMID: 37800969]
  27. Pharm Biol. 2017 Dec;55(1):1368-1374 [PMID: 28301985]
  28. Front Plant Sci. 2018 Feb 19;9:190 [PMID: 29515606]
  29. J Chem Ecol. 2023 Jun;49(5-6):325-339 [PMID: 37183205]
  30. Phytochemistry. 2003 Nov;64(6):1133-9 [PMID: 14568080]
  31. Plant Cell Physiol. 2019 Nov 1;60(11):2464-2477 [PMID: 31350891]
  32. Front Plant Sci. 2017 Feb 10;8:159 [PMID: 28239386]
  33. Nucleic Acids Res. 2004 Sep 30;32(17):5183-91 [PMID: 15459287]
  34. Appl Biochem Biotechnol. 2013 Jun;170(3):729-41 [PMID: 23609908]
  35. Sci Rep. 2022 Oct 25;12(1):17874 [PMID: 36284128]
  36. J Agric Food Chem. 2016 Nov 30;64(47):8973-8976 [PMID: 27933871]
  37. New Phytol. 2007;174(4):762-773 [PMID: 17504460]
  38. Physiol Plant. 2024 May-Jun;176(3):e14392 [PMID: 38887911]
  39. Physiol Plant. 2021 Jul;172(3):1711-1723 [PMID: 33605458]
  40. Front Plant Sci. 2021 Aug 20;12:730890 [PMID: 34490026]
  41. BMC Genomics. 2010 Jan 15;11:38 [PMID: 20078886]

Word Cloud

Created with Highcharts 10.0.0flavonoidbiosynthesiscontentteaflavonoidsassociationleafstudygeneticgenesHawkvarphenotypemechanismsvariabilityidentifiedimplicatedrevealedtraitsFlavonoidaccumulationwithinregionsstructuralhawkderivedtendershootsleavesrichcanpromotehealthcarehumansprimarykaempferol-3-O--D-glucosidekaempferol-3-O--D-galactosidequercetin-3-O--D-glucosidequercetin-3-O--D-galactosideexistencealongunderlyingremainsincompletelyunderstood109samplesanalyzeddeterminecorrelationFurthermoretranscriptome-widecandidatelocifourkeyconcentrationspredominantlyattributedinterpopulationdifferencessignificantlycorrelatedtreeDBHindicativeage-relatedTranscriptome-wideanalysis84significantSNPsassociated13locatedgenemajoritymetabolicprocessessecondarymetaboliteNotablydirectlyinvolvedpathwaysknownregulatemetabolismexertingpivotalinfluenceresultsphysiologicalbasisregulationwellmolecularalsolaystheoreticalgroundworksubsequentexplorationsdeterminantsinfluencingTranscriptome-WideAssociationAnalysisBiosynthesisGenesCorrelationLeafPhenotypesTeaGWASSNPantioxidantcompound

Similar Articles

Cited By