MFPSP: Identification of fungal species-specific phosphorylation site using offspring competition-based genetic algorithm.

Chao Wang, Quan Zou
Author Information
  1. Chao Wang: Center for Genomic and Personalized Medicine, Guangxi key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China. ORCID
  2. Quan Zou: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.

Abstract

Protein phosphorylation is essential in various signal transduction and cellular processes. To date, most tools are designed for model organisms, but only a handful of methods are suitable for predicting task in fungal species, and their performance still leaves much to be desired. In this study, a novel tool called MFPSP is developed for phosphorylation site prediction in multi-fungal species. The amino acids sequence features were derived from physicochemical and distributed information, and an offspring competition-based genetic algorithm was applied for choosing the most effective feature subset. The comparison results shown that MFPSP achieves a more advanced and balanced performance to several state-of-the-art available toolkits. Feature contribution and interaction exploration indicating the proposed model is efficient in uncovering concealed patterns within sequence. We anticipate MFPSP to serve as a valuable bioinformatics tool and benefiting practical experiments by pre-screening potential phosphorylation sites and enhancing our functional understanding of phosphorylation modifications in fungi. The source code and datasets are accessible at https://github.com/AI4HKB/MFPSP/.

References

  1. Nat Commun. 2022 Mar 10;13(1):1265 [PMID: 35273146]
  2. Bioinformatics. 2007 Apr 1;23(7):895-7 [PMID: 17282998]
  3. Bioinformatics. 2013 Mar 15;29(6):686-94 [PMID: 23341503]
  4. Brief Bioinform. 2020 Mar 23;21(2):595-608 [PMID: 30590490]
  5. Comput Biol Med. 2023 May;158:106798 [PMID: 36966555]
  6. Bioinformatics. 2020 Jan 1;36(1):73-80 [PMID: 31268128]
  7. Bioinformatics. 2019 Feb 15;35(4):593-601 [PMID: 30052767]
  8. IEEE J Biomed Health Inform. 2023 Oct 16;PP: [PMID: 37843994]
  9. Brief Bioinform. 2020 May 21;21(3):1047-1057 [PMID: 31067315]
  10. Science. 1983 May 6;220(4597):613-5 [PMID: 6836304]
  11. Cell Rep Methods. 2023 Mar 27;3(3):100430 [PMID: 37056379]
  12. J Cell Sci. 2002 Jan 15;115(Pt 2):241-56 [PMID: 11839776]
  13. RNA. 2019 Feb;25(2):205-218 [PMID: 30425123]
  14. Mol Biotechnol. 2010 May;45(1):87-100 [PMID: 20077036]
  15. Brief Bioinform. 2021 Nov 5;22(6): [PMID: 34160596]
  16. Microb Genom. 2020 Dec;6(12): [PMID: 33245691]
  17. Comput Struct Biotechnol J. 2021 May 23;19:3198-3208 [PMID: 34141139]
  18. Nucleic Acids Res. 2015 Jan;43(Database issue):D512-20 [PMID: 25514926]
  19. Bioinformatics. 2021 Dec 22;38(1):52-57 [PMID: 34427581]
  20. Brief Bioinform. 2022 Mar 10;23(2): [PMID: 35225328]
  21. Bioinformatics. 2019 Aug 15;35(16):2766-2773 [PMID: 30601936]
  22. Proteomics. 2004 Jun;4(6):1633-49 [PMID: 15174133]
  23. EMBO J. 2002 Oct 15;21(20):5396-407 [PMID: 12374740]
  24. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33834199]
  25. J Comput Biol. 2022 Sep;29(9):1001-1021 [PMID: 35593919]
  26. Bioinformatics. 2017 Dec 15;33(24):3909-3916 [PMID: 29036382]
  27. Science. 2006 Apr 14;312(5771):212-7 [PMID: 16614208]
  28. Bioinformatics. 2022 Sep 30;38(19):4497-4504 [PMID: 35997565]
  29. J Fungi (Basel). 2021 Sep 14;7(9): [PMID: 34575793]
  30. Nucleic Acids Res. 2004 Feb 11;32(3):1037-49 [PMID: 14960716]
  31. Artif Intell Med. 2023 Aug;142:102574 [PMID: 37316102]
  32. BMC Biol. 2023 Jan 24;21(1):12 [PMID: 36694239]
  33. IEEE J Biomed Health Inform. 2023 Sep;27(9):4559-4568 [PMID: 37402191]
  34. Nat Biotechnol. 2022 Mar;40(3):382-390 [PMID: 34663920]
  35. Int J Mol Sci. 2021 Oct 14;22(20): [PMID: 34681718]
  36. Bioinformatics. 2020 Jan 1;36(1):272-279 [PMID: 31225868]
  37. Nat Commun. 2022 Oct 27;13(1):6397 [PMID: 36302775]
  38. Nucleic Acids Res. 2022 Oct 14;50(18):10278-10289 [PMID: 36161334]
  39. Brief Bioinform. 2024 Jan 22;25(2): [PMID: 38485768]
  40. Microbiol Spectr. 2022 Feb 23;10(1):e0126921 [PMID: 35107358]
  41. Fungal Biol. 2017 Oct;121(10):869-875 [PMID: 28889911]

MeSH Term

Phosphorylation
Algorithms
Computational Biology
Fungi
Fungal Proteins
Species Specificity
Amino Acid Sequence
Software

Chemicals

Fungal Proteins

Word Cloud

Created with Highcharts 10.0.0phosphorylationMFPSPmodelfungalspeciesperformancetoolsitesequenceoffspringcompetition-basedgeneticalgorithmProteinessentialvarioussignaltransductioncellularprocessesdatetoolsdesignedorganismshandfulmethodssuitablepredictingtaskstillleavesmuchdesiredstudynovelcalleddevelopedpredictionmulti-fungalaminoacidsfeaturesderivedphysicochemicaldistributedinformationappliedchoosingeffectivefeaturesubsetcomparisonresultsshownachievesadvancedbalancedseveralstate-of-the-artavailabletoolkitsFeaturecontributioninteractionexplorationindicatingproposedefficientuncoveringconcealedpatternswithinanticipateservevaluablebioinformaticsbenefitingpracticalexperimentspre-screeningpotentialsitesenhancingfunctionalunderstandingmodificationsfungisourcecodedatasetsaccessiblehttps://githubcom/AI4HKB/MFPSP/MFPSP:Identificationspecies-specificusing

Similar Articles

Cited By

No available data.