Serotonin and Effort-Based Decision-Making: Dissociating Behavioral Effects of 8-OH-DPAT and PCPA.

D Kun��ick��, N Cmarkov��, S Ondr����kov��, D Ka��er, D Rodriguez, K Vale��, J Svoboda, H Bro��ka, A Stuchl��k
Author Information
  1. D Kun��ick��: Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic. daniela.kuncicka@fgu.cas.cz.

Abstract

Effort-based decision-making is particularly relevant to psychiatric conditions where motivation deficits are prominent features. Despite its clinical significance, the neurochemical mechanisms of this cognitive process remain unclarified. This study explores the impact of serotonin synthesis inhibition (PCPA) and modulation of serotonin release and 5-HT1A receptor agonism (8-OH-DPAT) on effort-based decision-making in rats. Adult male rats were trained in a modified T-maze task where they could obtain a high reward for climbing a mesh barrier or a low reward for no extra effort. Following training, rats received either acute 8-OH-DPAT treatment or subchronic PCPA treatment and were tested on their choices between high- and low-effort arms. The goal-arm choices and goal-arm entrance latencies were recorded. Next, homovanillic acid and 5-hydroxyindoleacetic acid, metabolites of dopamine and serotonin, respectively, were quantified in the rats' prefrontal cortex, striatum, and hippocampus. 8-OH-DPAT significantly increased low-effort, low-reward choices and increased goal-arm latency. In contrast, PCPA treatment did not affect these measures. Both PCPA and 8-OH-DPAT significantly decreased 5-hydroxyindoleacetic acid levels in the prefrontal cortex and the hippocampus. 8-OH-DPAT treatment was also associated with decreased homovanillic acid levels in the hippocampus. Our findings suggest that the overall reduction of serotonin levels alone does not affect effort-based decision-making and highlights the possible role of the hippocampus and the 5-HT1A receptor in this cognitive process.

References

  1. Clin Psychol Rev. 2021 Aug;88:102065 [PMID: 34274800]
  2. Annu Rev Psychol. 2024 Jan 18;75:1-32 [PMID: 37788571]
  3. Xenobiotica. 1995 Dec;25(12):1371-80 [PMID: 8719911]
  4. Trends Cogn Sci. 2008 Jan;12(1):31-40 [PMID: 18069045]
  5. Front Behav Neurosci. 2018 Mar 23;12:52 [PMID: 29628879]
  6. Pharmacol Biochem Behav. 1996 Feb;53(2):385-90 [PMID: 8808148]
  7. Brain. 2018 May 1;141(5):1455-1469 [PMID: 29672668]
  8. Arch Int Pharmacodyn Ther. 1990 Jul-Aug;306:106-13 [PMID: 1981664]
  9. Neuroreport. 1999 Feb 25;10(3):493-5 [PMID: 10208577]
  10. Neuropsychopharmacology. 2012 Jan;37(2):390-401 [PMID: 21881567]
  11. Brain Res. 1984 Jan 16;291(1):159-63 [PMID: 6230136]
  12. Front Psychiatry. 2013 Nov 15;4:149 [PMID: 24298260]
  13. Neurosci Biobehav Rev. 2007;31(5):705-27 [PMID: 17418894]
  14. Eur J Pharmacol. 1995 Jan 16;288(2):173-86 [PMID: 7720779]
  15. Neuron. 2016 Jun 1;90(5):927-39 [PMID: 27253447]
  16. Synapse. 2006 May;59(6):359-67 [PMID: 16463399]
  17. Brain Sci. 2016 Dec 29;7(1): [PMID: 28036071]
  18. Behav Brain Res. 2008 Dec 1;194(1):79-85 [PMID: 18638506]
  19. Curr Opin Behav Sci. 2018 Aug;22:1-6 [PMID: 29607387]
  20. Neuropsychiatr Dis Treat. 2020 Oct 28;16:2499-2509 [PMID: 33149591]
  21. J Neural Transm. 1985;62(1-2):117-24 [PMID: 2410561]
  22. Biol Psychiatry. 2017 Dec 1;82(11):847-856 [PMID: 28673442]
  23. Pharmacol Biochem Behav. 2021 Mar;202:173115 [PMID: 33493546]
  24. Neurosci Biobehav Rev. 2012 Jan;36(1):218-36 [PMID: 21693132]
  25. J Parkinsons Dis. 2021;11(2):725-735 [PMID: 33459665]
  26. J Physiol Pharmacol. 2007 Dec;58(4):611-24 [PMID: 18195476]
  27. Soc Cogn Affect Neurosci. 2009 Dec;4(4):346-56 [PMID: 19553236]
  28. Cogn Affect Behav Neurosci. 2022 Dec;22(6):1264-1274 [PMID: 35729467]
  29. Neuropsychopharmacology. 2004 Dec;29(12):2216-24 [PMID: 15199370]
  30. J Neurosci. 2014 Feb 5;34(6):2148-54 [PMID: 24501355]
  31. Biol Psychiatry. 2006 Aug 1;60(3):207-17 [PMID: 16875929]
  32. J Neurosci. 2011 Nov 16;31(46):16597-602 [PMID: 22090487]
  33. Psychopharmacology (Berl). 2005 May;179(3):587-96 [PMID: 15864561]
  34. Neurosci Biobehav Rev. 2019 Jul;102:371-381 [PMID: 31047891]
  35. J Neurosci. 2012 Apr 25;32(17):5833-42 [PMID: 22539845]
  36. Br J Pharmacol. 1989 Nov;98(3):989-97 [PMID: 2574066]
  37. Neuron. 2014 Oct 1;84(1):177-189 [PMID: 25220811]
  38. Nat Methods. 2019 Jul;16(7):565-566 [PMID: 31217592]
  39. Jpn J Pharmacol. 2001 Aug;86(4):451-3 [PMID: 11569620]
  40. Pharmacol Rev. 2007 Dec;59(4):360-417 [PMID: 18160701]
  41. Pharmacol Ther. 2007 Feb;113(2):296-320 [PMID: 17049611]
  42. Neuropsychopharmacology. 2003 Jan;28(1):153-62 [PMID: 12496952]
  43. Neuropsychopharmacology. 2016 Sep;41(10):2566-76 [PMID: 27125304]
  44. Psychopharmacology (Berl). 2008 Jul;199(1):99-108 [PMID: 18545986]
  45. Psychiatry Clin Neurosci. 2014 Aug;68(8):587-605 [PMID: 24762196]
  46. Brain Res. 2003 Jan 3;959(1):58-67 [PMID: 12480158]
  47. Curr Opin Neurobiol. 2007 Dec;17(6):692-7 [PMID: 18313289]
  48. Psychopharmacology (Berl). 2014 Oct;231(21):4179-87 [PMID: 24728653]
  49. Adv Pharm Bull. 2019 Aug;9(3):374-381 [PMID: 31592064]
  50. Behav Brain Res. 2012 Aug 1;233(2):494-9 [PMID: 22652392]
  51. Eur J Pharmacol. 1993 Jul 20;238(2-3):357-67 [PMID: 7691622]
  52. Neuroimage. 2023 Oct 1;279:120326 [PMID: 37579997]
  53. Psychopharmacology (Berl). 2016 Sep;233(17):3125-34 [PMID: 27339616]
  54. Behav Neurosci. 2009 Apr;123(2):242-51 [PMID: 19331447]
  55. Neuron. 2012 Nov 8;76(3):470-85 [PMID: 23141060]

MeSH Term

Animals
Male
Serotonin
8-Hydroxy-2-(di-n-propylamino)tetralin
Decision Making
Rats
Behavior, Animal
Serotonin 5-HT1 Receptor Agonists
Rats, Sprague-Dawley
Maze Learning
Reward

Chemicals

Serotonin
8-Hydroxy-2-(di-n-propylamino)tetralin
Serotonin 5-HT1 Receptor Agonists

Word Cloud

Created with Highcharts 10.0.08-OH-DPATPCPAserotonintreatmentacidhippocampusdecision-makingratschoicesgoal-armlevelscognitiveprocess5-HT1Areceptoreffort-basedrewardlow-efforthomovanillic5-hydroxyindoleaceticprefrontalcortexsignificantlyincreasedaffectdecreasedEffort-basedparticularlyrelevantpsychiatricconditionsmotivationdeficitsprominentfeaturesDespiteclinicalsignificanceneurochemicalmechanismsremainunclarifiedstudyexploresimpactsynthesisinhibitionmodulationreleaseagonismAdultmaletrainedmodifiedT-mazetaskobtainhighclimbingmeshbarrierlowextraeffortFollowingtrainingreceivedeitheracutesubchronictestedhigh-armsentrancelatenciesrecordedNextmetabolitesdopaminerespectivelyquantifiedrats'striatumlow-rewardlatencycontrastmeasuresalsoassociatedfindingssuggestoverallreductionalonehighlightspossibleroleSerotoninEffort-BasedDecision-Making:DissociatingBehavioralEffects

Similar Articles

Cited By

No available data.