Revisiting institutional punishment in the N-person prisoner's dilemma.

Bianca Y S Ishikawa, José F Fontanari
Author Information
  1. Bianca Y S Ishikawa: Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos São Paulo, 13560-970, Brazil.
  2. José F Fontanari: Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos São Paulo, 13560-970, Brazil. fontanari@ifsc.usp.br.

Abstract

The conflict between individual and collective interests makes fostering cooperation in human societies a challenging task, requiring drastic measures such as the establishment of sanctioning institutions. These institutions are costly because they have to be maintained regardless of the presence or absence of offenders. Here, we revisit some improvements to the standard N-person prisoner's dilemma formulation with institutional punishment in a well-mixed population, namely the elimination of overpunishment, the requirement of a minimum number of contributors to establish the sanctioning institution, and the sharing of its maintenance costs once this minimum number is reached. In addition, we focus on large groups or communities for which sanctioning institutions are ubiquitous. Using the replicator equation framework for an infinite population, we find that by sufficiently fining players who fail to contribute either to the public good or to the sanctioning institution, a population of contributors immune to invasion by these free riders can be established, provided that the contributors are sufficiently numerous. In a finite population, we use finite-size scaling to show that, for some parameter settings, demographic noise helps to fixate the strategy that contributes to the public good but not to the sanctioning institution even for infinitely large populations when, somewhat counterintuitively, its proportion in the initial population vanishes with a small power of the population size.

Keywords

References

  1. Axelrod R (1984) The evolution of cooperation. Basic Books, New York
  2. Binder K (1985) The Monte Carlo method for the study of phase transitions: a review of some recent progress. J Comp Phys 59:1–55 [DOI: 10.1016/0021-9991(85)90106-8]
  3. Boyd R, Gintis H, Bowles S (2010) Coordinated punishment of defectors sustains cooperation and can proliferate when rare. Science 328:617–620 [PMID: 20431013]
  4. Boyd R, Gintis H, Bowles S, Richerson PJ (2003) The evolution of altruistic punishment. Proc Natl Acad Sci USA 100:3531–3535 [PMID: 12631700]
  5. Boyd R, Richerson PJ (1992) Punishment allows the evolution of cooperation (or anything else) in sizable groups. Ethol Sociobiol 13:171–195 [DOI: 10.1016/0162-3095(92)90032-Y]
  6. Britton NF (2003) Essential mathematical biology. Springer, London [DOI: 10.1007/978-1-4471-0049-2]
  7. Campos PRA, Fontanari JF (1999) Finite-size scaling of the error threshold transition in finite populations. J Phys A: Math Gen 32:L1–L7 [DOI: 10.1088/0305-4470/32/1/001]
  8. Couto MC, Pacheco JM, Santos FC (2020) Governance of risky public goods under graduated punishment. J Theor Biol 505:110423 [PMID: 32726648]
  9. Darley JM, Latané B (1968) Bystander intervention in emergencies: diffusion of responsibility. J Pers Soc Psychol 8:377–383 [PMID: 5645600]
  10. Darwin C (1871) The descent of man, and selection in relation to sex. John Murray, London [DOI: 10.1037/12294-000]
  11. Dercole F, De Carli M, Della Rossa F, Papadopoulos AV (2013) Overpunishing is not necessary to fix cooperation in voluntary public goods games. J Theor Biol 326:70–81 [PMID: 23228364]
  12. Fehr E, Gachter S (2000) Cooperation and punishment in public goods experiments. Am Econ Rev 90:980–994 [DOI: 10.1257/aer.90.4.980]
  13. Fehr E, Gachter S (2002) Altruistic punishment in humans. Nature 415:137–140 [PMID: 11805825]
  14. Fontanari JF (2024) Imitation dynamics and the replicator equation. Europhys Lett 146:47001 [DOI: 10.1209/0295-5075/ad473e]
  15. Fontanari JF, Santos M (2024) The dynamics of casual groups can keep free-riders at bay. Math Biosc 372:109188 [DOI: 10.1016/j.mbs.2024.109188]
  16. Fontanari JF, Santos M (2024) Solving the prisoner’s dilemma trap in Hamilton’s model of temporarily formed random groups. J Theor Biol 595:111946 [PMID: 39271052]
  17. Fowler JH (2005) Altruistic punishment and the origin of cooperation. Proc Natl Acad Sci USA 102:7047–7049 [PMID: 15857950]
  18. Fox J, Guyer M (1978) Public choice and cooperation in N-person prisoner’s dilemma. J Conflict Resolut 22:469–481 [DOI: 10.1177/002200277802200307]
  19. Graeber D, Wengrow D (2021) The dawn of everything: a new history of humanity. Allen Lane, London
  20. Góis AR, Santos FP, Pacheco JM, Santos FC (2019) Reward and punishment in climate change dilemmas. Sci Rep 9:1–9 [DOI: 10.1038/s41598-019-52524-8]
  21. Hamilton WD (1964) The genetical evolution of social behaviour I. J Theor Biol 7:1–16 [PMID: 5875341]
  22. Hamilton WD (1975) Innate social aptitudes of man: an approach from evolutionary genetics, in: R. Fox R (ed), ASA studies 4: biological anthropology, Malaby Press, London, pp. 133–153
  23. Hardin J (1968) The tragedy of the commons. Science 162:1243–1248 [PMID: 5699198]
  24. Hauert C, Traulsen A, Nowak MA, Brandt HH, Sigmund K (2007) Via freedom to coercion: the emergence of costly punishment. Science 316:1905–1907 [PMID: 17600218]
  25. Helbing D, Szolnoki A, Perc M, Szabó G (2010) Evolutionary establishment of moral and double moral standards through spatial interactions. PLoS Comput Biol 6:e1000758 [PMID: 20454464]
  26. Helbing D, Szolnoki A, Perc M, Szabó G (2010) Punish, but not too hard: how costly punishment spreads in the spatial public goods game. New J Phys 12:083005 [DOI: 10.1088/1367-2630/12/8/083005]
  27. Hobbes T (1651) Leviathan, Andrew Crooke, London
  28. Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge [DOI: 10.1017/CBO9781139173179]
  29. Kennedy D, Norman C (2005) What don’t we know? Science 309:75 [PMID: 15994521]
  30. Kimura M (1964) Diffusion models in population genetics. J Appl Probab 1:177–232 [DOI: 10.2307/3211856]
  31. Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge [DOI: 10.1017/CBO9780511806292]
  32. Murray JD (2007) Mathematical biology: I. An introduction. Springer, New York
  33. Nowak MA (2006) Five rules for the evolution of cooperation. Science 314:1560–1563 [PMID: 17158317]
  34. Nowak M, May R (1992) Evolutionary games and spatial chaos. Nature 359:826–829 [DOI: 10.1038/359826a0]
  35. Ostrom E (1990) Governing the commons: the evolution of institutions for collective active. Cambridge University Press, Cambridge [DOI: 10.1017/CBO9780511807763]
  36. Pacheco JM, Santos FC, Souza MO, Skyrms B (2009) Evolutionary dynamics of collective action in N-person stag hunt dilemmas. Proc R Soc B 276:315–321 [PMID: 18812288]
  37. Perc M, Szolnoki A (2012) Self-organization of punishment in structured populations. New J Phys 14:043013 [DOI: 10.1088/1367-2630/14/4/043013]
  38. Privman V (1990) Finite-size scaling and numerical simulations of statistical systems. World Scientific, Singapore [DOI: 10.1142/1011]
  39. Rosas A, Ferreira CP, Fontanari JF (2002) Evolution of protein synthesis in a lattice model of replicators. Phys Rev Lett 89:188101 [PMID: 12398639]
  40. Sandholm WH (2010) Population games and evolutionary dynamics. MIT Press, Cambridge
  41. Santos MD, Pinheiro FL, Santos FC, Pacheco JM (2012) Dynamics of N-person snowdrift games in structured populations. J Theor Biol 315:81–86 [PMID: 22982288]
  42. Shimao H, Nakamaru M (2013) Strict or graduated punishment? Effect of punishment strictness on the evolution of cooperation in continuous public goods games,. PLoS One 8:1–10 [DOI: 10.1371/journal.pone.0059894]
  43. Sigmund K, De Silva H, Traulsen A, Hauert C (2010) Social learning promotes institutions for governing the commons. Nature 466:861–863 [PMID: 20631710]
  44. De Silva H, Hauert C, Traulsen A, Sigmund K (2010) Freedom, enforcement, and the social dilemma of strong altruism. Evol Econ 20:203–217 [DOI: 10.1007/s00191-009-0162-8]
  45. Sun W, Liu L, Chen X, Szolnoki A, Vasconcelos VV (2021) Combination of institutional incentives for cooperative governance of risky commons. IScience 24:102844 [PMID: 34381969]
  46. Szolnoki A, Szabó G, Czakó L (2011) Competition of individual and institutional punishments in spatial public goods games. Phys Rev E 84:046106 [DOI: 10.1103/PhysRevE.84.046106]
  47. Szolnoki A, Szabó G, Perc M (2011) Phase diagrams for the spatial public goods game with pool punishment. Phys Rev E 83:036101 [DOI: 10.1103/PhysRevE.83.036101]
  48. Traulsen A, Claussen JC, Hauert C (2005) Coevolutionary dynamics: from finite to infinite populations. Phys Rev Lett 95:238701 [PMID: 16384353]
  49. Trivers RL (1971) The evolution of reciprocal altruism. Q Rev Biol 46:35–57 [DOI: 10.1086/406755]
  50. Vasconcelos VV, Santos FC, Pacheco JM (2013) A bottom-up institutional approach to cooperative governance of risky commons. Nat Clim Change 3:797–801 [DOI: 10.1038/nclimate1927]
  51. Wang S, Chen X, Szolnoki A (2019) Exploring optimal institutional incentives for public cooperation. Commun Nonlinear Sci Numer Simul 79:104914 [DOI: 10.1016/j.cnsns.2019.104914]
  52. Wang S, Chen X, Xiao Z, Szolnoki A, Vasconcelos VV (2023) Optimization of institutional incentives for cooperation in structured populations. J R Soc Interface 20:20220653 [PMID: 36722070]
  53. Wang C, Perc M, Szolnoki A (2024) Evolutionary dynamics of any multiplayer game on regular graphs. Nat Commun 15:5349 [PMID: 38914550]
  54. Wilson DS (1975) A theory of group selection. Proc Nat Acad Sci USA 72:143–146 [PMID: 1054490]
  55. Xia C, Wang J, Perc M, Wang Z (2023) Reputation and reciprocity. Phys Life Rev 46:8–45 [PMID: 37244154]
  56. Zheng DF, Yin HP, Chan CH, Hui PM (2007) Cooperative behavior in a model of evolutionary snowdrift games with Ν-person interactions. Europhys Lett 80:18002 [DOI: 10.1209/0295-5075/80/18002]

Grants

  1. 305620/2021-5/Conselho Nacional de Desenvolvimento Científico e Tecnológico

MeSH Term

Humans
Punishment
Prisoner Dilemma
Cooperative Behavior
Game Theory
Population Density
Models, Theoretical

Word Cloud

Created with Highcharts 10.0.0populationsanctioninginstitutionscontributorsinstitutioncooperationN-personprisoner'sdilemmainstitutionalpunishmentminimumnumberlargeequationsufficientlypublicgoodscalingnoisegamesconflictindividualcollectiveinterestsmakesfosteringhumansocietieschallengingtaskrequiringdrasticmeasuresestablishmentcostlymaintainedregardlesspresenceabsenceoffendersrevisitimprovementsstandardformulationwell-mixednamelyeliminationoverpunishmentrequirementestablishsharingmaintenancecostsreachedadditionfocusgroupscommunitiesubiquitousUsingreplicatorframeworkinfinitefindfiningplayersfailcontributeeitherimmuneinvasionfreeriderscanestablishedprovidednumerousfiniteusefinite-sizeshowparametersettingsdemographichelpsfixatestrategycontributeseveninfinitelypopulationssomewhatcounterintuitivelyproportioninitialvanishessmallpowersizeRevisitingDemographicEvolutionEvolutionaryFinite-sizePublicgoodsReplicator

Similar Articles

Cited By