Experts fail to reliably detect AI-generated histological data.

Jan Hartung, Stefanie Reuter, Vera Anna Kulow, Michael F��hling, Cord Spreckelsen, Ralf Mrowka
Author Information
  1. Jan Hartung: Institute for Physiology, Faculty of Medicine, University of Freiburg, 79108, Freiburg, Germany. jan.hartung@physiologie.uni-freiburg.de. ORCID
  2. Stefanie Reuter: ThIMEDOP, Jena University Hospital, Nonnenplan 4, 07745, Jena, Germany. ORCID
  3. Vera Anna Kulow: Charit�� - Universit��tsmedizin Berlin, Corporate member of Freie Universit��t Berlin and Freie Universit��t Berlin and Humboldt-Universit��t zu Berlin, Institut f��r Translationale Physiologie (CCM), Charit��platz 1, 10117, Berlin, Germany. ORCID
  4. Michael F��hling: Charit�� - Universit��tsmedizin Berlin, Corporate member of Freie Universit��t Berlin and Freie Universit��t Berlin and Humboldt-Universit��t zu Berlin, Institut f��r Translationale Physiologie (CCM), Charit��platz 1, 10117, Berlin, Germany. ORCID
  5. Cord Spreckelsen: Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Bachstrase 18, 07743, Jena, Germany.
  6. Ralf Mrowka: Department of Internal Medicine III, Experimental Nephrology, Jena University Hospital, Nonnenplan 4, 07745, Jena, Germany. ralf.mrowka@med.uni-jena.de. ORCID

Abstract

AI-based methods to generate images have seen unprecedented advances in recent years challenging both image forensic and human perceptual capabilities. Accordingly, these methods are expected to play an increasingly important role in the fraudulent fabrication of data. This includes images with complicated intrinsic structures such as histological tissue samples, which are harder to forge manually. Here, we use stable diffusion, one of the most recent generative algorithms, to create such a set of artificial histological samples. In a large study with over 800 participants, we study the ability of human subjects to discriminate between these artificial and genuine histological images. Although they perform better than naive participants, we find that even experts fail to reliably identify fabricated data. While participant performance depends on the amount of training data used, even low quantities are sufficient to create convincing images, necessitating methods and policies to detect fabricated data in scientific publications.

Keywords

References

  1. Nature. 2012 Mar 28;483(7391):531-3 [PMID: 22460880]
  2. PLoS One. 2013 Jul 08;8(7):e68397 [PMID: 23861902]
  3. BMJ Open. 2019 Oct 30;9(10):e031909 [PMID: 31666272]
  4. Mol Brain. 2020 Feb 21;13(1):24 [PMID: 32079532]
  5. Patterns (N Y). 2022 Jul 08;3(7):100511 [PMID: 35845832]
  6. Nature. 2023 Dec;624(7992):479-481 [PMID: 38087103]
  7. Sci Eng Ethics. 2021 Jun 29;27(4):41 [PMID: 34189653]
  8. Cogn Res Princ Implic. 2017;2(1):30 [PMID: 28776002]
  9. Neuron. 2017 Jan 4;93(1):15-31 [PMID: 28056343]
  10. NPJ Precis Oncol. 2023 May 29;7(1):49 [PMID: 37248379]
  11. Sci Data. 2023 Apr 21;10(1):231 [PMID: 37085533]
  12. Patterns (N Y). 2022 May 13;3(5):100509 [PMID: 35607625]
  13. PLOS Digit Health. 2023 Jan 6;2(1):e0000082 [PMID: 36812604]
  14. Nature. 2023 Jun;618(7964):222-223 [PMID: 37258739]
  15. Proc Natl Acad Sci U S A. 2022 Feb 22;119(8): [PMID: 35165187]
  16. Mol Cell Biol. 2018 Sep 28;38(20): [PMID: 30037982]
  17. mBio. 2016 Jun 07;7(3): [PMID: 27273827]
  18. Cell Death Dis. 2018 Mar 14;9(3):400 [PMID: 29540667]
  19. PLoS One. 2022 Feb 16;17(2):e0263023 [PMID: 35171921]
  20. J Cell Biol. 2015 Apr 27;209(2):191-3 [PMID: 25918221]
  21. NPJ Digit Med. 2023 Oct 9;6(1):186 [PMID: 37813960]
  22. Nat Biomed Eng. 2021 Jun;5(6):493-497 [PMID: 34131324]
  23. PLoS Biol. 2015 Jun 09;13(6):e1002165 [PMID: 26057340]
  24. Account Res. 2022 Oct;29(7):442-459 [PMID: 34196235]
  25. PLoS One. 2009 May 29;4(5):e5738 [PMID: 19478950]

MeSH Term

Humans
Artificial Intelligence
Algorithms
Image Processing, Computer-Assisted

Word Cloud

Created with Highcharts 10.0.0dataimageshistologicalmethodsrecenthumansamplesdiffusioncreateartificialstudyparticipantsevenfailreliablyfabricateddetectAI-basedgenerateseenunprecedentedadvancesyearschallengingimageforensicperceptualcapabilitiesAccordinglyexpectedplayincreasinglyimportantrolefraudulentfabricationincludescomplicatedintrinsicstructurestissueharderforgemanuallyusestableonegenerativealgorithmssetlarge800abilitysubjectsdiscriminategenuineAlthoughperformbetternaivefindexpertsidentifyparticipantperformancedependsamounttrainingusedlowquantitiessufficientconvincingnecessitatingpoliciesscientificpublicationsExpertsAI-generatedArtificialintelligenceFraudHistologyMisconductPublishingStable

Similar Articles

Cited By (1)