Exploring the mechanism of sesamin for the treatment of PM-induced cardiomyocyte damage based on transcriptomics, network pharmacology and experimental verification.

Yadong Zhang, Rui Wen, Jingyi Ren, Fan Zhang, Huanting Pei, Jinshi Zuo, Yuxia Ma
Author Information
  1. Yadong Zhang: Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China.
  2. Rui Wen: Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China.
  3. Jingyi Ren: Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China.
  4. Fan Zhang: Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China.
  5. Huanting Pei: Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China.
  6. Jinshi Zuo: Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China.
  7. Yuxia Ma: Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China.

Abstract

Introduction: Exposure to fine particulate matter (PM) is known to be associated with cardiovascular diseases. Sesamin (Ses) is a natural phenolic compound found in sesame seeds and sesame oil. Ferroptosis is a novel mode of cell death characterised by iron-dependent lipid peroxidation. This study aims to explore whether PM can induce ferroptosis in H9C2 cells and to investigate the precise protective mechanism of Ses.
Methods: Based on transcriptomic data, PM may induce ferroptosis in cardiomyocytes. The ferroptosis inducer erastin and ferroptosis inhibitor ferrostatin-1 (Fer-1) were used to illustrate the mechanisms involved in PM-induced H9C2 cell injury. Using network pharmacology, the pharmacological mechanism and potential therapy targets of Ses were explored for the treatment of PM-induced cardiomyocyte injury. H9C2 cells were cultured and pretreated with Fer-1 or different concentrations of Ses, and then cardiomyocyte injury model was established using erastin or PM. Indicators of oxidative responses, including total superoxide dismutase, reduced glutathione, glutathione peroxidase and malondialdehyde, were measured. The expression levels of ferroptosis-related proteins were determined through Western blot analysis.
Results: Results demonstrate that PM induces ferroptosis in H9C2 cells and Ses exerts a protective effect by suppressing ACSL4-mediated ferroptosis.
Discussion: Overall, these findings elucidate a novel mechanism by which Ses ameliorates the detrimental effects of PM on cardiomyocytes.

Keywords

References

  1. Cold Spring Harb Protoc. 2018 Jun 1;2018(6): [PMID: 29858337]
  2. Front Cardiovasc Med. 2021 May 11;8:672745 [PMID: 34046441]
  3. Biochem Biophys Res Commun. 2016 Sep 23;478(3):1338-43 [PMID: 27565726]
  4. J Am Coll Cardiol. 2018 Oct 23;72(17):2054-2070 [PMID: 30336830]
  5. Int J Nanomedicine. 2022 Jul 07;17:3043-3054 [PMID: 35832119]
  6. Front Cardiovasc Med. 2022 Apr 01;9:853468 [PMID: 35433888]
  7. Ecotoxicol Environ Saf. 2022 Aug;241:113825 [PMID: 36068752]
  8. Arterioscler Thromb Vasc Biol. 2010 Apr;30(4):749-57 [PMID: 20093625]
  9. Zhongguo Zhong Yao Za Zhi. 2015 Apr;40(7):1355-61 [PMID: 26281561]
  10. Redox Biol. 2019 Sep;26:101264 [PMID: 31279222]
  11. Environ Sci Pollut Res Int. 2023 Jan;30(4):10890-10900 [PMID: 36088442]
  12. Cell Death Discov. 2022 Jul 22;8(1):332 [PMID: 35869042]
  13. Int J Epidemiol. 2021 May 17;50(2):578-588 [PMID: 33349857]
  14. FEBS J. 2022 Nov;289(22):7038-7050 [PMID: 34092035]
  15. Nat Chem Biol. 2017 Jan;13(1):91-98 [PMID: 27842070]
  16. Redox Biol. 2022 Jun;52:102288 [PMID: 35325804]
  17. J Nutr Health Aging. 2023;27(2):134-141 [PMID: 36806868]
  18. Medicine (Baltimore). 2023 Jun 9;102(23):e33912 [PMID: 37335656]
  19. Ecotoxicol Environ Saf. 2021 Oct 15;223:112586 [PMID: 34364126]
  20. Ecotoxicol Environ Saf. 2023 Jan 1;249:114350 [PMID: 36508794]
  21. Int J Mol Sci. 2020 Jul 09;21(14): [PMID: 32659952]
  22. CNS Neurosci Ther. 2022 Jul;28(7):1045-1058 [PMID: 35403328]
  23. Int J Mol Med. 2021 Jun;47(6): [PMID: 33907828]
  24. Sci Rep. 2020 Oct 22;10(1):18128 [PMID: 33093629]
  25. Saudi Pharm J. 2020 Oct;28(10):1276-1289 [PMID: 33132721]
  26. Nutr Rev. 2024 Apr 12;82(5):654-663 [PMID: 37587082]
  27. J Glob Health. 2022 Dec 21;12:11012 [PMID: 36538381]
  28. ACS Chem Biol. 2015 Jul 17;10(7):1604-9 [PMID: 25965523]
  29. Sci Rep. 2021 May 10;11(1):9897 [PMID: 33972608]
  30. Environ Toxicol Pharmacol. 2024 Sep;110:104529 [PMID: 39127435]
  31. J Comput Chem. 2010 Jan 30;31(2):455-61 [PMID: 19499576]
  32. Oxid Med Cell Longev. 2022 May 14;2022:7157444 [PMID: 35607702]
  33. Acta Histochem. 2021 Dec;123(8):151819 [PMID: 34844154]
  34. Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613 [PMID: 30476243]
  35. Environ Int. 2023 May;175:107923 [PMID: 37119653]
  36. Biomolecules. 2023 Jan 18;13(2): [PMID: 36830566]
  37. DNA Cell Biol. 2020 Feb;39(2):210-225 [PMID: 31809190]
  38. J Cell Mol Med. 2022 Apr;26(8):2462-2476 [PMID: 35315192]
  39. Nat Chem Biol. 2017 Jan;13(1):81-90 [PMID: 27842066]
  40. Biochem Biophys Res Commun. 2018 Feb 26;497(1):233-240 [PMID: 29427658]
  41. BMJ. 2019 Dec 30;367:l6720 [PMID: 31888885]
  42. J Thorac Dis. 2016 Jan;8(1):E8-E19 [PMID: 26904258]
  43. Adv Sci (Weinh). 2024 Sep;11(34):e2310227 [PMID: 38984448]
  44. Poult Sci. 2021 Jun;100(6):101142 [PMID: 33975045]
  45. Open Biol. 2021 Apr;11(4):200367 [PMID: 33878951]
  46. Lipids. 1999 Jun;34(6):633-7 [PMID: 10405978]
  47. Crit Rev Food Sci Nutr. 2022;62(18):5081-5112 [PMID: 33544009]
  48. Front Endocrinol (Lausanne). 2022 Mar 04;13:842152 [PMID: 35311241]
  49. Heliyon. 2022 Mar 25;8(3):e09198 [PMID: 35368529]
  50. BMC Pharmacol Toxicol. 2020 May 8;21(1):34 [PMID: 32384920]
  51. JAMA Intern Med. 2018 Oct 1;178(10):1350-1357 [PMID: 30208394]
  52. Environ Int. 2016 Dec;97:180-186 [PMID: 27614532]
  53. Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2672-2680 [PMID: 30692261]
  54. Sci Rep. 2016 Feb 16;6:21146 [PMID: 26879404]
  55. Heart Fail Rev. 2017 May;22(3):337-347 [PMID: 28303426]
  56. J Appl Toxicol. 2016 Apr;36(4):609-17 [PMID: 26472149]

Word Cloud

Created with Highcharts 10.0.0ferroptosisPMSesH9C2mechanisminjurycellsPM-inducednetworkpharmacologycardiomyocytesesamenovelcellinduceprotectivecardiomyocyteserastinFer-1treatmentglutathionesesamintranscriptomicsIntroduction:ExposurefineparticulatematterknownassociatedcardiovasculardiseasesSesaminnaturalphenoliccompoundfoundseedsoilFerroptosismodedeathcharacterisediron-dependentlipidperoxidationstudyaimsexplorewhethercaninvestigatepreciseMethods:Basedtranscriptomicdatamayinducerinhibitorferrostatin-1usedillustratemechanismsinvolvedUsingpharmacologicalpotentialtherapytargetsexploredculturedpretreateddifferentconcentrationsmodelestablishedusingIndicatorsoxidativeresponsesincludingtotalsuperoxidedismutasereducedperoxidasemalondialdehydemeasuredexpressionlevelsferroptosis-relatedproteinsdeterminedWesternblotanalysisResults:ResultsdemonstrateinducesexertseffectsuppressingACSL4-mediatedDiscussion:OverallfindingselucidateamelioratesdetrimentaleffectsExploringdamagebasedexperimentalverificationACSL4PM25heart

Similar Articles

Cited By