The simultaneous use of nanovesicles and magnetic nanoparticles for cancer targeting and imaging.

Sara Salatin, Maryam Azarfarin, Afsaneh Farjami, Samin Hamidi
Author Information
  1. Sara Salatin: Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
  2. Maryam Azarfarin: School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
  3. Afsaneh Farjami: Pharmaceutical and Food Control Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
  4. Samin Hamidi: Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran. ORCID

Abstract

cancer is increasingly being recognized as a global health issue with considerable unmet medical need. Despite the rapid progression of anticancer pharmaceuticals, there are still significant challenges for the effective management of cancer. In many circumstances, cancer cells are difficult to detect and treat. Combination of nanovesicles (NVs) and magnetic nanoparticles (MNPs), referred as magnetic nanovesicles (MNVs), is now well recognized as a potential theranostic option for improving cancer treatment outcomes and reducing adverse effects. MNVs can be used for monitoring the long-term fate and functional benefits of cancer therapy. Moreover, MNV-mediated hyperthermia mechanism has been explored as a potential technique for triggering cancer cell death, and/or controlled release of laden cargo. In this review, we focus on the unique characteristics of MNVs as a promising avenue for targeted drug delivery, diagnosis, and treatments of cancer or tumor. Moreover, we discuss critical considerations related to the issues raised in this area, which will guide future research toward better anti-cancer therapeutics for clinical applications.

Keywords

References

  1. Drug Dev Ind Pharm. 2020 Aug;46(8):1318-1333 [PMID: 32598186]
  2. Expert Opin Drug Deliv. 2020 Jun;17(6):881-893 [PMID: 32441175]
  3. Expert Opin Drug Deliv. 2021 Nov;18(11):1707-1722 [PMID: 34553650]
  4. Biofabrication. 2022 Aug 05;14(4): [PMID: 35793612]
  5. Front Pharmacol. 2023 Jun 27;14:1174120 [PMID: 37441534]
  6. J Cancer Res Clin Oncol. 2023 Dec;149(20):18065-18080 [PMID: 37982828]
  7. Biomaterials. 2018 Sep;178:302-316 [PMID: 29982104]
  8. Adv Healthc Mater. 2013 Nov;2(11):1420-4 [PMID: 23606565]
  9. ACS Nano. 2016 Mar 22;10(3):3323-33 [PMID: 26938862]
  10. Pharmaceutics. 2023 Feb 23;15(3): [PMID: 36986612]
  11. Mol Imaging Biol. 2019 Apr;21(2):269-278 [PMID: 29942990]
  12. World J Gastroenterol. 2018 Jan 21;24(3):351-359 [PMID: 29391757]
  13. Sci Rep. 2023 Feb 8;13(1):2278 [PMID: 36755030]
  14. Sci Rep. 2022 May 24;12(1):8697 [PMID: 35610309]
  15. Adv Sci (Weinh). 2022 Jun;9(17):e2105451 [PMID: 35508804]
  16. Pharmaceutics. 2021 Mar 16;13(3): [PMID: 33809700]
  17. Front Bioeng Biotechnol. 2022 Feb 11;10:850366 [PMID: 35223804]
  18. Int J Mol Sci. 2022 Feb 01;23(3): [PMID: 35163607]
  19. ACS Omega. 2017 Oct 31;2(10):6544-6555 [PMID: 30023523]
  20. Int J Nanomedicine. 2020 Oct 23;15:8201-8215 [PMID: 33122906]
  21. Expert Opin Drug Deliv. 2024 Apr;21(4):521-535 [PMID: 38555483]
  22. Int J Mol Sci. 2021 Jul 26;22(15): [PMID: 34360714]
  23. Acta Pharm Sin B. 2021 Aug;11(8):2172-2196 [PMID: 34522583]
  24. J Nanobiotechnology. 2021 Dec 14;19(1):421 [PMID: 34906155]
  25. Adv Pharm Bull. 2021 Feb;11(2):267-273 [PMID: 33880348]
  26. Biomaterials. 2014 Apr;35(12):3885-94 [PMID: 24495486]
  27. Biomater Sci. 2019 Apr 23;7(5):2102-2122 [PMID: 30869664]
  28. Nat Commun. 2023 Jun 16;14(1):3593 [PMID: 37328484]
  29. Nanomaterials (Basel). 2022 Mar 02;12(5): [PMID: 35269324]
  30. Biomaterials. 2020 Jun;243:119942 [PMID: 32179302]
  31. Integr Biol (Camb). 2017 Jun 19;9(6):555-565 [PMID: 28513646]
  32. Drug Deliv. 2016 Nov;23(9):3436-3443 [PMID: 27193383]
  33. Int J Nanomedicine. 2017 Oct 27;12:7923-7936 [PMID: 29138559]
  34. J Control Release. 2020 Jun 10;322:137-148 [PMID: 32145266]
  35. Breast Cancer Res. 2023 Jan 12;25(1):3 [PMID: 36635685]
  36. ACS Nano. 2021 Jun 22;15(6):9495-9508 [PMID: 34011152]
  37. Med Oncol. 2022 Sep 29;39(12):240 [PMID: 36175809]
  38. Nanoscale. 2015 Mar 12;7(12):5411-26 [PMID: 25731982]
  39. Int J Nanomedicine. 2018 Mar 13;13:1495-1504 [PMID: 29559778]
  40. Drug Deliv Transl Res. 2023 Dec;13(12):3154-3168 [PMID: 37365403]
  41. Toxicon. 2024 Apr;241:107673 [PMID: 38432612]
  42. J Transl Med. 2024 Apr 9;22(1):339 [PMID: 38594760]
  43. Front Bioeng Biotechnol. 2020 Jul 03;8:690 [PMID: 32719782]
  44. PLoS One. 2014 Mar 27;9(3):e92924 [PMID: 24675979]
  45. Oncotarget. 2016 Jul 12;7(28):43762-43778 [PMID: 27248325]
  46. Expert Opin Drug Deliv. 2019 Dec;16(12):1313-1331 [PMID: 31738622]
  47. Oncotarget. 2017 May 16;8(20):32741-32751 [PMID: 28416757]
  48. J Nanobiotechnology. 2022 Jan 21;20(1):43 [PMID: 35062953]
  49. Int J Mol Sci. 2023 Aug 15;24(16): [PMID: 37629007]
  50. J Microencapsul. 2017 Jun;34(4):408-415 [PMID: 28590788]
  51. Nanomaterials (Basel). 2020 Oct 23;10(11): [PMID: 33114052]
  52. Pharmaceutics. 2023 Jul 07;15(7): [PMID: 37514088]
  53. Cancer Cell Int. 2024 Jan 29;24(1):46 [PMID: 38287318]
  54. Int J Mol Sci. 2020 Jul 22;21(15): [PMID: 32707876]
  55. Nanotechnology. 2020 Aug 28;31(35):355104 [PMID: 32403097]
  56. ACS Appl Mater Interfaces. 2018 Oct 3;10(39):33060-33069 [PMID: 30204401]
  57. Pharm Dev Technol. 2020 Dec;25(10):1249-1259 [PMID: 32811263]
  58. ACS Appl Mater Interfaces. 2023 Jan 11;15(1):182-199 [PMID: 35929960]
  59. Nanomedicine. 2022 Jul;43:102554 [PMID: 35358733]
  60. J Pharm Biomed Anal. 2020 Jul 15;186:113265 [PMID: 32283481]
  61. Biomaterials. 2017 Jan;114:23-33 [PMID: 27837682]
  62. Cancers (Basel). 2021 Mar 12;13(6): [PMID: 33808948]
  63. Pharm Res. 2015 Nov;32(11):3746-3755 [PMID: 26078000]
  64. Pharmaceutics. 2023 Apr 06;15(4): [PMID: 37111654]
  65. Pharmaceutics. 2023 Feb 15;15(2): [PMID: 36839970]
  66. Genes Dis. 2022 Mar 18;10(4):1367-1401 [PMID: 37397557]
  67. Curr Pharm Des. 2021;27(42):4315-4329 [PMID: 34779364]
  68. J Nanosci Nanotechnol. 2013 Mar;13(3):1626-30 [PMID: 23755567]
  69. Nanoscale Res Lett. 2014 Sep 15;9(1):497 [PMID: 25246875]
  70. ACS Nano. 2011 Feb 22;5(2):1122-40 [PMID: 21218795]
  71. Biomed Res Int. 2021 Oct 28;2021:9322282 [PMID: 34746313]
  72. ACS Nano. 2017 Feb 28;11(2):1509-1519 [PMID: 28045496]
  73. Adv Healthc Mater. 2023 Dec;12(32):e2301232 [PMID: 37709487]
  74. Nanomedicine (Lond). 2016 Nov;11(21):2757-2767 [PMID: 27759497]
  75. Colloids Surf B Biointerfaces. 2015 Nov 1;135:109-115 [PMID: 26241922]
  76. Korean J Radiol. 2014 Jul-Aug;15(4):411-22 [PMID: 25053899]
  77. Adv Pharm Bull. 2023 Mar;13(2):218-232 [PMID: 37342386]
  78. Daru. 2018 Sep 12;: [PMID: 30209759]
  79. Pharmaceutics. 2023 Mar 02;15(3): [PMID: 36986678]
  80. Small. 2023 Dec;19(49):e2302856 [PMID: 37596716]
  81. Biomaterials. 2021 Sep;276:121056 [PMID: 34364178]
  82. Colloids Surf B Biointerfaces. 2023 Feb;222:113134 [PMID: 36630772]
  83. Int J Nanomedicine. 2014 Aug 22;9:4055-66 [PMID: 25187709]
  84. Curr Pharm Des. 2022;28(11):910-921 [PMID: 34879797]
  85. BMC Cancer. 2020 Apr 28;20(1):354 [PMID: 32345258]
  86. Adv Clin Chem. 2022;110:171-192 [PMID: 36210075]
  87. Cancer Metastasis Rev. 2023 Sep;42(3):601-627 [PMID: 36826760]
  88. Sci Rep. 2016 Dec 22;6:38991 [PMID: 28004770]
  89. Asian J Pharm Sci. 2020 Jul;15(4):461-471 [PMID: 32952669]
  90. J Cancer Res Ther. 2019 Oct-Dec;15(6):1352-1358 [PMID: 31898672]

MeSH Term

Humans
Neoplasms
Magnetite Nanoparticles
Animals
Antineoplastic Agents
Drug Delivery Systems
Theranostic Nanomedicine
Hyperthermia, Induced
Drug Carriers

Chemicals

Magnetite Nanoparticles
Antineoplastic Agents
Drug Carriers

Word Cloud

Created with Highcharts 10.0.0cancermagneticnanovesiclesnanoparticlesMNVsCancerrecognizedpotentialtreatmentMoreoverdiagnosistumorincreasinglyglobalhealthissueconsiderableunmetmedicalneedDespiterapidprogressionanticancerpharmaceuticalsstillsignificantchallengeseffectivemanagementmanycircumstancescellsdifficultdetecttreatCombinationNVsMNPsreferrednowwelltheranosticoptionimprovingoutcomesreducingadverseeffectscanusedmonitoringlong-termfatefunctionalbenefitstherapyMNV-mediatedhyperthermiamechanismexploredtechniquetriggeringcelldeathand/orcontrolledreleaseladencargoreviewfocusuniquecharacteristicspromisingavenuetargeteddrugdeliverytreatmentsdiscusscriticalconsiderationsrelatedissuesraisedareawillguidefutureresearchtowardbetteranti-cancertherapeuticsclinicalapplicationssimultaneoususetargetingimagingnanovesicle

Similar Articles

Cited By (1)